
BUILDING THE METAMIDI DATASET: LINKING SYMBOLIC AND
AUDIO MUSICAL DATA

Jeff Ens
Simon Fraser University

jeffe@sfu.ca

Philippe Pasquier
Simon Fraser University
pasquier@sfu.ca

ABSTRACT

We introduce the MetaMIDI Dataset (MMD), a large scale
collection of 436,631 MIDI files and metadata. MMD
contains artist and title metadata for 221,504 MIDI files,
and genre metadata for 143,868 MIDI files, collected
during the web-scraping process. MIDI files in MMD
were matched against a collection of 32,000,000 30-
second audio clips retrieved from Spotify, resulting in
over 10,796,557 audio-MIDI matches. In addition, we
linked 600,142 Spotify tracks with 1,094,901 MusicBrainz
recordings to produce a set of 168,032 MIDI files that are
matched to the MusicBrainz database. We also provide a
set of 53,496 MIDI files using audio-MIDI matches where
the derived metadata on Spotify is a fuzzy match to the
web-scraped metadata. These links augment many files in
the dataset with the extensive metadata available via the
Spotify API and the MusicBrainz database. We anticipate
that this collection of data will be of great use to MIR re-
searchers addressing a variety of research topics.

1. INTRODUCTION

Large-scale metadata-rich MIDI datasets containing audio-
MIDI matches [1–3] are indispensable in a wide variety
of research contexts. For example, the Lakh Midi Dataset
(LMD) [3] has been applied in many different contexts,
including training generative music systems [4, 5], tempo-
estimation [6], genre classification [7] and even as a pri-
mary data-source for new datasets [8, 9]. Motivated by
the widespread demand for datasets of this nature, we cre-
ated the MetaMIDI Dataset (MMD), which contains 2.4
times the number of MIDI files in the LMD, and audio-
MIDI matches associating MIDI files with Spotify and
MusicBrainz. To put the following numbers into context,
we note that there is a many-to-one relationship between
Spotify track ids and the actual audio recording. In this
paper, we describe the process of assembling the dataset,
which consists of the following contributions:

• Collection of 436,631 MIDI files.

• Scraped artist + title metadata for 221,504 MIDIs
(10 times more than the LMD).

© J. Ens, P. Pasquier. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: J. Ens,
P. Pasquier, “Building the MetaMIDI Dataset: Linking Symbolic and Au-
dio Musical Data”, in Proc. of the 22nd Int. Society for Music Information
Retrieval Conf., Online, 2021.

• Scraped genre metadata for 143,868 MIDIs.

• An improved audio-MIDI matching procedure,
which produced 10,796,557 audio-MIDI matches
linking 237,236 MIDIs to one or more tracks on
Spotify.

• 829,728 high reliability audio-MIDI + scraped meta-
data (artist and title) matches linking 53,496 MIDIs
to one or more tracks on Spotify.

• A method for linking Spotify tracks and Mu-
sicBrainz recordings, producing 8,263,482 unique
links that associate 1,094,901 MusicBrainz record-
ings with 600,142 Spotify tracks.

• 168,032 MIDIs matched to MusicBrainz IDs via the
Spotify/MusicBrainz linking procedure.

2. DATA COLLECTION

We scraped publicly available websites and were able to
amass a collection of 436,631 unique MIDI files. Candi-
date websites were selected using a search engine to query
various phrases including keywords such as MIDI, music,
and a variety of musical genres. A list of the sites scraped
and the number of MIDI files found on each site is pro-
vided in the dataset. Where possible, we also collected
additional metadata, such as the artist, title and genre of
associated with a particular MIDI file.

3. AUDIO MIDI MATCHING

To augment MMD with additional metadata, we match the
MIDI files against a large metadata-rich collection of au-
dio clips. Although the LMD is comprised of audio-MIDI
matches against the Million Song Dataset [10], we decided
to use 30-second preview clips made available through the
Spotify API 1 . The primary motivation for this decision
was the fact that the Spotify API provides over an order of
magnitude more data. Using the Spotify API, we were able
to collect 32,000,000 30-second MP3 files (over 13TB of
raw data). To compute the audio-MIDI matches, we model
our approach after the procedure employed by Raffel [3],
who matched the 176,581 MIDI files in the LMD with
1,000,000 audio files in the Million Song Dataset [10].
However, we make some modifications to the matching al-
gorithm to accommodate the large amount of data which
was collected.

1 https://developer.spotify.com/documentation/web-api/

182

Raffel’s audio-MIDI matching procedure is comprised
of two stages [3]. In the first stage, which we refer to as
the blocking stage, audio-MIDI pairs which are unlikely
to be a match are removed from consideration. In the
second stage, which we refer to as the matching stage,
a confidence score (on the range [0,1]) is computed for
each remaining audio-MIDI pair. To be considered a valid
match, the audio-MIDI pair must have a confidence score
greater than 0.5. To compute the confidence score for an
audio-MIDI pair, Raffel computes the Constant-Q Trans-
form (CQT) [11] for the audio file and the audio-rendered
MIDI file, using 48 logarithmically-spaced bins from C2
to B5 (12 bins per octave). Then, the dynamic time warp-
ing (DTW) algorithm is used to find the optimal alignment,
from which the confidence score is directly computed [3].
Although this procedure produces good results, it is ex-
tremely slow, as DTW has quadratic run-time, which makes
this approach intractable.

To speed up the matching process, Raffel proposes
learning distance preserving low-dimension embedding
spaces, which should allow for highly dissimilar matches
to be efficiently removed from the search space. Raffel ex-
plores two approaches, an attention-based network (H∞)
that embeds arbitrary length CQT matrices into a 128-bit
hash code [12], and a convolution-based network (Hk) that
maps k × 48 CQT matrices into 32-bit hash codes [13],
which can be used to transform a n× 48 CQT matrix into
a sequence of bnk c 32-bit hash codes. Using trained embed-
ding networks H∞ and H8, Raffel employs the following
procedure to match a single MIDI CQT m against a set of
audio CQTs A.

1. Blocking Stage

(a) Compute DH(H∞(a),H∞(m)) for each a ∈ A,
where DH is the bitwise hamming distance.

(b) Construct a set A′, containing the t1 = 100,000 a ∈
A that are closest to m, using the distances calculated
in 1a.

(c) Compute DTW(H8(a),H8(m)) for each a ∈ A′.

(d) Construct a set A′′ containing the t2 = 250 a ∈ A′

that are closest to m, using the distances calculated
in 1c.

2. Matching Stage

(a) Compute DTW(a,m) for each a ∈ A′′ and record any
matches with more than .5 confidence.

3.1 Modifications to the Matching Procedure

According to Raffel’s measurements, it takes an average
of 108 seconds on a single CPU to match one MIDI file
against 1,000,000 Audio files. As a result, without making
modifications to Raffel’s procedure, it would take roughly
558 days on a 32-core CPU to match our collections of
audio and MIDI files. In order to optimize the audio-
MIDI matching procedure to our specific context, we make
changes to the blocking stage. Notably, since we do not
modify the second stage, and use Raffel’s code 2 to com-

2 https://github.com/craffel/midi-dataset

pute the confidence scores, our matches can be considered
to be the same quality as those found in the LMD.

The simplest modification involved implementing a c++
version of the DTW code for 32-bit hash sequences, used
in the blocking stage, which runs 2 times faster than Raf-
fel’s jit-compiled Cython implementation according to our
measurements. We also reconsider the use of the attention
based embedding network H∞ in Steps 1a and 1b. Using
Raffel’s approach, Step 1a can be computed very quickly,
accounting for less than 1% of the total algorithm run-time.
However, due to the low reliability of distance measure-
ments in this embedding space, relatively few audio files
can be removed from consideration. As a result, Step 1c
takes much longer to run, accounting for roughly half of
the total run-time. One reason for the limited accuracy of
this approach, is that H∞ must embed MIDI and audio
CQTs into the same 128-bit hash code, despite MIDI files
being much longer than the audio files.

To address this issue, we use DW, defined in Eq. 1, to
compute the distances in Step 1a. Given an n × 48 MIDI
CQT m and an audio CQT a, we build a set of 30-second
length sub-sequences (Xm) from m, as defined in Eq. 1a,
where s is the stride. Using H128 we map each 30-second
length CQT matrix (i.e. 646×48) x to a hash code by split-
ting x into contiguous windowed sub-sequences, comput-
ing H128(·) for each sub-sequence, and concatenating the
resulting hash codes. Formally, we refer to this process as
H?

k, which we define in Eq. 1b, where ⊕ denotes concate-
nation. Then, as shown in Eq. 1c, we compute the bitwise
hamming distance (DH) betweenH?

128(x) andH?
128(a) for

each x ∈ Xm, considering the minimum distance to be
representative of the distance between m and a.

Xm = {m[si :si+646] : 0 ≤ i <

⌊
n−646+1

s

⌋
} (1a)

H?
k(x) = ⊕{Hk(x[ki :k(i+1)]) : 0≤ i<

⌊
||x||
k

⌋
} (1b)

DW(a,m) = min({DH(H?
128(a),H?

128(x)) :x∈Xm})
(1c)

3.2 Training the Embedding Networks

We derive our neural network architecture from the one
used by Raffel [3]. The first section of the network is
comprised of k groups, with each group is containing 2
3×3 convolutional layers, followed by a 2×1 max pooling
layer. The second section contains two dense layers with
2048 units each, followed by a 32-dimensional output. The
ReLU activation is used in all layers, except for the last
layer, which uses the tanh activation function to effec-
tively binarize the output. For the H128 network, which
learns to downsample a sequence of 128× 48 CQT matrix
into a 32-bit hash code, there are k = 5 groups, using the
filter sizes 64, 64, 64, 32, and 16 for each group respec-
tively. For the H8 network, which learns to downsample a
8×48 CQT matrix into a 32-bit hash code, there are k = 3
groups, using 64, 32, and 16 filters per group respectively.
We trainH128 andH8 using the same triplet loss as Raffel.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

183

100 101 102 103 104 105 106

Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 M
ID

I f
ile

s m
at

ch
ed

Step 1a stride=0 (Ours)
Step 1a stride=32 (Ours)
Step 1a (Raffel)
Step 1c (Ours)
Step 1c (Raffel)

Figure 1. Percentage of MIDI files matched at thresholds.

In terms of training data, we use the 116,189 audio-MIDI
matches from the LMD, which we split into testing, vali-
dation and training datasets. We train each network with
a learning rate of 1e−4, and early stopping on validation
every 1000 batches, using Keras [14].

3.3 Evaluating the Embedding Networks

To evaluate the expected accuracy of distance calculations
using our trained embedding networks, we use the same
method proposed by Raffel. For a known audio-MIDI pair
(m, a), we measure the distance between m and a set of
1,000,000 audio filesX , with a ∈ X , to determine the rank
of the correct match. After repeating this process for 1,000
audio-MIDI pairs in our test set, we can measure the pro-
portion of MIDI files where the correct match ranks below
a particular threshold. The results are presented in Figure
1, including results previously presented by Raffel for pur-
poses of comparison [3]. Although Raffel used different
data to train and evaluate the embedding, we can be fairly
confident in the reliability of our comparison, as the curve
for our H8 embedding network (Step 1c (Ours)) is nearly
identical to the curve for Raffel’s H8 embedding network
(Step 1c (Raffel)). Although using DW slows down Step
1, the results demonstrate that it is much more accurate,
which means we can reduce the number of comparisons
needed in Steps 1c and 1d, which ultimately speeds up the
algorithm, as Step 1c accounts for roughly half of the total
run-time.

3.4 Matching Against 32,000,000 Audio Files

Clearly, a large factor contributing to the run-time of the
matching algorithm is the threshold levels (t1, t2) for each
stage of the search. Raffel et al. determine t1 and t2 based
on the evaluation method presented in Figure 1. However,
this approach is merely a proxy for what we are actually
trying accomplish. Put simply, in matching a large collec-
tion of MIDI files with a large collection of Audio Files,
we are trying to maximize the number of matches. In or-
der to get a sense of the relationship between run-time and
the number of matches, we run our matching procedure
with 1,000 MIDI files and 10,000,000 audio files, using
various thresholds. The results in figure 2 show that we
pay a high computational cost to increase the number of

MIDIs matched. For example, increasing the thresholds
from t1 = 100,000 / t2 = 250 to t1 = 1,000,000 / t2 =
2,500 increases the run-time by 560%, while only yield-
ing a 10% increase in the number of MIDIs matched and a
200% increase in the number of Audio files matched.

Due to memory limitations, it is not possible to match
a MIDI CQT against all 32,000,000 audio CQTs at once.
As a result, we subdivide the audio CQTs into four chunks,
and process them each separately. In light of the results in
the previous section, we decided to set t1 = 100,000 and
t2 = 250 for each chunk. In Table 1, we report the results
of the Audio-MIDI matching procedure. In comparison to
the LMD, where only 26% of the MIDI files were matched
to at least one Audio file, we were able to match 56% of
the MIDI files, for a total of 237,236 MIDI files matched.
Notably, our modifications to the matching procedure also
had a substantial impact on the run-time, as the average
run-time per match was only 3.3 times more than the run-
time for LMD matching, despite matching against over 32
times more audio.

3.5 High Reliability Audio-MIDI Matches

Although the audio-MIDI matches are fairly reliable, Raf-
fel notes that it is not uncommon for there to be false pos-
itives when an audio-MIDI pair share the same chord pro-
gression [3]. To address these issues, we produce a subset
of the audio-MIDI matches which are more reliable, using
artist+title metadata that was collected during the scrap-
ing process. In short, we only retain audio-MIDI matches
where the title or artist scraped with the MIDI file is a
fuzzy match to the metadata on Spotify. Since artists and
title metadata frequently contain extraneous information,
we remove all content in parenthesis or square brackets,
and remove all content following a dash. As a result, the
Spotify track titled "Rain Is Falling (Karaoke Version) -
Originally Performed By Electric Light Orchestra" would
be reduced to "Rain is Falling" after pre-processing. We
measure the similarity between two strings using cosine
similarity on their tri-gram profiles, and only keep matches
when the similarity exceeds .8 for either the artist or the ti-
tle metadata. Once this procedure has been completed, we
are left with 53,496 (12%) matched MIDI files and 829,728
total matches.

4. LINKING SPOTIFY AND MUSICBRAINZ

To further expand the dataset, we make links between Spo-
tify track ids to MusicBrainz recording ids using a classi-
fier trained on audio features. Although AcousticBrainz
Labs has provided an archive 3 of the Echo Nest map-
pings between MusicBrainz and Spotify, we were only
able to match 24,363 MIDI files to MusicBrainz IDs us-
ing this resource. To train our classifier, we gathered a set
of ground truth data using International Standard Record-
ing Codes (ISRC), which are provided by both Spotify and
MusicBrainz. Although Spotify provides this information
for almost all of their tracks via their API, only a percent-
age of recordings in the MusicBrainz database have been

3 https://labs.acousticbrainz.org/million-song-dataset-echonest-
archive/

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

184

500 520 540 560 580 600
MIDIs Matched

100000 250
200000 250
500000 250

1000000 1000
1000000 2500

0 5000 10000 15000 20000
Audios Matched

0 200 400 600
Average Run-Time

Figure 2. The number of MIDI files matched, Audio recordings matched and average match run-time for different thresh-
olds. On the left, the first value denotes t1 and the second value denotes t2.

Dataset MIDIs Audio
Source

Matching
Method

Matched
MIDIs

Matched
Audios

Total
Matches

Percentage of
MIDIs Matched

LMD 176,581 MSD [10] Audio 45,129 31,034 116,189 25.6%
MMD 436,631 Spotify Audio 237,236 2,209,941 10,796,557 52.7%
MMD 436,631 Spotify Audio + Text 53,496 347,703 829,728 12.3%
MMD 436,631 MusicBrainz? Audio 168,032 1,094,901 8,384,256 38.5%
MMD 436,631 MusicBrainz? Audio + Text 34,174 408,922 1,232,909 7.8%

Table 1. Statistics for the audio-MIDI matching. Note that the MusicBrainz matches were computed by combining the
Spotify audio-MIDI matches and the Spotify-MusicBrainz links (Section 4). The Percentage of MIDIs Matched column
reports the percentage of MIDI files in the respective dataset that have at least one match to an audio file. Total Matches
denotes the total number of unique audio-MIDI pairs matched.

labeled with an ISRC code. Using the ISRC codes which
were available, we were able to compile about 100,000
unique ground truth matches. This data was divided into
training, validation and testing sets.

We use the AcousticBrainz API 4 to obtain features for
recordings in the MusicBrainz database, since the actual
audio is not provided by MusicBrainz or AcousticBrainz.
To extract features from the 30-second Spotify preview
clips, we use the same feature extractor as AcousticBrainz
(Essentia [15]). Using the low-level features extrated via
Essentia, we obtain a feature vector of dimension 1773 to
represent each audio clip. Then we trained a classifier to
predict whether a pair of vectors, one collected from the
AcousticBrainz database, and another from Spotify, corre-
spond to the same recording. To train the classifier, we ex-
pose the model to ground truth matches, where the Acous-
ticBrainz recording and Spotify recording share the same
ISRC, and negative matches, where both recordings do
not share the same ISRC. To construct a negative match,
we randomly select one recording from each data source
(AcousticBrainz and Spotify). Note that for training, val-
idation and testing we make sure the model is exposed to
both conditions (ground truth and negative match) an equal
number of times.

We use the XGBoost library [16] to train a gradi-
ent boosting model. To determine the optimal hyper-
parameters for the model, we perform a grid search us-
ing the following parameters: nestimators {2500, 5000},
learning rate {.1, .25, .5, .75}, and max depth of {2, 3, 4}.
To evaluate the models, we calculate the accuracy with
which the model was able to predict if the pair of record-
ings was a positive (ground-truth) or negative match. We
found the model with nestimators=2500 learning rate=.25
and max depth=4 to perform the best on the validation set,
achieving 97.6% accuracy. To give us some indication that

4 https://acousticbrainz.org/data

we are not simply over-fitting on the validation set, we
compute the accuracy of the best model using the testing
set. Based on the fact that the best model scored 97.5%
accuracy on the test set, which was only used once, we can
be fairly confident that the model will generalize with this
level of accuracy.

Since, at the time of writing, there are 5,534,103 unique
recordings in the AcousticBrainz dataset, and 2,209,941
Spotify audio previews (see Table 1) which we want to
match against, collecting the model’s predictions for each
pairwise match would be extremely computationally ex-
pensive. To make this process feasible, we first match
all the artists in the MusicBrainz database against a list
of artists from Spotify using tri-gram cosine distance with
a threshold of .7. Then we match each the titles of each
recording if the artists were a match, once again using tri-
gram cosine distance with a threshold of .7. Then for each
potential match, we use the classifier to predict whether it
is actually an audio match. Consequently, the error rate
should be lower than 2.5% since matches must also have
similar metadata (artist title) to be considered a match. The
entire process took about 3 days on a single computer.
In Table 2 below, we outline the results of the Spotify-
MusicBrainz linking process. We provide details on the
MIDI-MusicBrainz matches which were derived from the
audio-MIDI matches in Table 1.

5. ANALYZING THE DATASET

5.1 Overview Statistics for the Midi Files

In order get a sense of the type of data that was col-
lected, we compute the distributions for several features.
We parse a MIDI file into a set of tracks, where a track
is simply the set of note onsets and offsets belonging to
a (MIDI track,channel,instrument) tuple. Each
track is subdivided into a sequence of bars, using the time

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

185

Matched
Spotify IDs

Matched
MusicBrainz IDs

Spotify-MusicBrainz
Matches

MIDI-MusicBrainz
Matches

MSD Echo Nest Archive 1,307,152 675,240 3,168,164 24,363
ISRC Matches 104,404 69,006 104,404 82,951

Ours 600,142 1,094,901 8,263,482 168,032

Table 2. Statistics for the Spotify-MusicBrainz matching.

signature information present in the MIDI file. Due to
space limitations, we present a few of the most pertinent
features below, providing a more comprehensive overview
elsewhere 5 :

1. Number of Tracks : The number of tracks, as de-
fined above, in a MIDI file.

2. Beat Length : The total length in quarter note beats
of an entire MIDI file.

3. Notes Per Bar : The number of note onsets occur-
ring in a bar. We measure this on each track sepa-
rately, so that we do not conflate notes per bar and
number of tracks.

We compute the distribution of each of these features
across three different sets of data: the LMD, MMD, and
their symmetric difference MMD ∆ LMD. These distri-
butions are shown in Figure 3. On a whole, the graphs
demonstrate that LMD, MMD ∆ LMD and MMD are all
fairly similar, however there are some differences worth
noting. The two most obvious differences, are the beat
length and number of tracks. The difference in beat length
distributions can mainly be explained by the fact that two
of the sites we scraped MIDIs from only provide 30s pre-
view MIDI clips for free. Since the musical quality of these
shorter MIDIs is comparable to that found in the LMD, we
saw no real reason to exclude these files. The difference in
track counts per MIDI does not have an obvious explana-
tion, but is worth noting nonetheless.

5.2 Estimating the Reliability of Scraped Metadata

To gauge the reliability of the scraped metadata, we ana-
lyze instances where metadata was collected for the same
MIDI file (md5 checksum) from multiple sources. In to-
tal, there are over 10,000 MIDI files which satisfy this cri-
teria. For each of these MIDI files, we compare the ti-
tle/artist and genre/category metadata separately. For the
title/artist metadata, we concatenate this metadata into a
single string, delimited by a "-", and compute cosine simi-
larity on their tri-gram profiles. For the genre metadata, we
compute tri-gram cosine similarity between each pairwise
combination of elements between two genre/category lists,
and report the maximum similarity. The mean similarity
is 73.7% for title/artist metadata and 1.1% for genre meta-
data. Immediately apparent, is the significant discrepancy,
as title/artist metadata appears to be fairly consistent from
site to site, while genre metadata is not. Further manual
analysis reveals that the genres/categories are often very
generic, which may make them unsuitable for some pur-
poses. In some respects, this is not altogether surprising,

5 https://github.com/jeffreyjohnens/MetaMIDIDataset

as determining the genre/category of a piece of music is
a highly subjective process, and other research has shown
a significant level of disagreement [17]. However, with
regards to the artist/title metadata, these results seem to in-
dicate that we can be fairly confident in this form of meta-
data. It is worth noting that this type of analysis does not
rule out cases where artist/title metadata on multiple sites
was derived from a single inaccurate source to begin with.

5.3 False Positives and Audio Midi Matching

Using the standard and high-reliability sets of audio-MIDI
matches, we can further analyze the source of false posi-
tives in the matching procedure. To do this, we compare
the genre distribution of each set of audio-MIDI matches.
Since Spotify uses more than 5,000 genres, many of which
contain descriptors of particular locations (ex. Louisville
Indie) or languages (ex. Spanish Indie Pop), we pre-
process the data to remove geographical locations, de-
monyms and languoids. This results in about 2,500 genres.
To further aggregate these genres into broader categories
we employ a graph embedding approach. Using the Spo-
tify API, we collect a list of genres for 336,507 different
artists. For example, the band U2 has a genre list contain-
ing three genres: Irish Rock, Permanent Wave, and Rock.
Note that after we apply our pre-processing procedure, U2
has two genres: Rock and Permanent Wave. Of particu-
lar interest for our purposes here, is artists which have a
genre list containing more than one genre, as the overall
frequency with which two genres co-occur within genre
lists should provide a good indication of their similarity.

Then we construct a graph where each genre is a node,
and the edge weights between nodes are the count of co-
occurrences within the genre lists. To create the embed-
ding, we use the Node2Vec algorithm [18], which cre-
ates an embedding space that is trained on relations found
within the graph. Similar to the word2vec algorithm [19],
where adjacent groupings of words inform the embedding,
random walks on the graph are used to infer a context
for each node. We use the nodevectors 6 implementation
of Node2Vec to learn a 32-dimensional embedding space,
training with random walks of length 30 for 100 epochs.
To determine a small set of k representative genres, we use
Agglomerative Hierarchical Clustering with Ward linkage
to partition the embedded genre vectors into k clusters. In
order to give each cluster a human-readable label, we count
the frequency with which each of the genres belonging to
the cluster is used in the genre lists. The most frequently
used genre is taken as the label for each genre. We set
k = 15, which produces the following set of genres: indie,
rock, experimental, jazz, pop, metal, musica, electronic,

6 https://github.com/VHRanger/nodevectors

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

186

0 5 10 15 20 25

num
tracks

Lakh Midi Dataset (LMD)

0 5 10 15 20 25

MMD LMD

0 5 10 15 20 25

MetaMIDI Dataset (MMD)

0 200 400 600 800 1000

beat
length

0 200 400 600 800 1000 0 200 400 600 800 1000

0 2 4 6 8

notes
per
bar

0 2 4 6 8 0 2 4 6 8

Figure 3. The distributions for various features computed on LMD, MMD ∆ LMD and MMD.

0.00 0.05 0.10 0.15

pop
classical

indie
electronic

folk
rock
jazz

musica
punk rock

choir
metal

hip hop
experimental

electronica
punk

audio matches

0.0 0.1 0.2

audio + text matches

Figure 4. The distribution of genres for matched MIDI
files using two methods: audio and audio + text.

folk, choir, classical, punk, punk rock, hip-hop, and elec-
tronica. We admit that our decision to set k = 15 is fairly
arbitrary, however, due to the nature of our clustering pro-
cedure, selecting a different value for k would not have a
large impact. For example, setting k = 16 produces the
same set of 15 genres with one new genre cluster.

In Figure 4 the genre distributions are plotted for each
version of the matching procedure. Since we can be fairly
confident that the audio + text matches are more accu-
rate, analyzing the discrepancies between the genre distri-
butions can help identify some of the shortcomings of the
DTW audio-MIDI match algorithm. In the audio matches
distribution, we see a large increase in pieces classified as
pop and electronic, which indicates these pieces are likely
the source of most of the error. This may be a byproduct
of their simple harmonic structure, and/or the prevalence
of remixes and covers within these particular genres.

6. USING THE METAMIDI DATASET

The dataset, as well as a detailed description of its contents,
can be accessed through the MetaMIDI Dataset reposi-

tory 7 . Throughout the dataset, MIDI files are identified
by their md5 checksum. We provide mappings from md5
checksums to Spotify track ids and MusicBrainz record-
ing ids, which can be used to access a plethora of meta-
data. The MusicBrainz database provides access to vari-
ety of linked entities including artists, recordings, releases,
composers, producers, recording engineers and labels. De-
tailed attributes are available for most entities. For exam-
ple, the MusicBrainz entry for the group Bon Iver, provides
the date and location where the group was established, a
list of aliases, a set of genre tags, and a comprehensive list
of links to external websites. Using the Spotify API, a vari-
ety of metadata can be accessed, including track-based au-
dio features such as danceability, valence, liveness and en-
ergy; and additional metadata ranging from genre to artist
popularity.

7. CONCLUSION

Although the primary contribution is the dataset itself, we
have also provided reusable insights related to the audio-
MIDI matching algorithm and the Spotify-MusicBrainz
linking procedure. One limitation worth noting, is the un-
certainty in relying on Spotify’s 30-second clips to per-
sist into the future, which unfortunately has already be-
come an issue with the 7Digital clips in the Million Song
Dataset [10]. With regards to the dataset, we anticipate
a wide variety of potential use-cases for this data. Since
many generative systems have been trained using the Lakh
MIDI Dataset [4, 5, 9], the MMD will undoubtedly be a
valuable asset to research in this area, as it features 2.4
times more MIDI files. More broadly, the metadata that
our audio-MIDI matches provide access to, as well as the
audio-MIDI matches themselves, can be used to support a
variety of scientific inquires related to MIR and Musicol-
ogy.

7 https://github.com/jeffreyjohnens/MetaMIDIDataset

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

187

8. ACKNOWLEDGMENTS

We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC), and
the Helmut & Hugo Eppich Family Graduate Scholarship.

9. REFERENCES

[1] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.-
Z. A. Huang, S. Dieleman, E. Elsen, J. Engel, and
D. Eck, “Enabling factorized piano music modeling
and generation with the MAESTRO dataset,” arXiv
preprint arXiv:1810.12247, 2018.

[2] F. Foscarin, A. Mcleod, P. Rigaux, F. Jacquemard, and
M. Sakai, “ASAP: a dataset of aligned scores and per-
formances for piano transcription,” in Proc. of the 21st
International Society for Music Information Retrieval
Conference, 2020.

[3] C. Raffel, “Learning-based methods for comparing se-
quences, with applications to audio-to-midi alignment
and matching,” Ph.D. dissertation, Columbia Univer-
sity, 2016.

[4] C. Donahue, H. H. Mao, Y. E. Li, G. W. Cottrell, and
J. McAuley, “LakhNES: Improving multi-instrumental
music generation with cross-domain pre-training,” in
Proc. of the 20th International Society for Music Infor-
mation Retrieval Conference, 2019, pp. 685–692.

[5] A. Roberts, J. H. Engel, C. Raffel, C. Hawthorne, and
D. Eck, “A hierarchical latent vector model for learn-
ing long-term structure in music,” in Proc. of the 35th
International Conference on Machine Learning, 2018,
pp. 4361–4370.

[6] H. Schreiber and M. Müller, “A single-step approach
to musical tempo estimation using a convolutional neu-
ral network.” in Proc. of the 19th International Society
for Music Information Retrieval Conference, 2018, pp.
98–105.

[7] A. Ferraro and K. Lemström, “On large-scale genre
classification in symbolically encoded music by auto-
matic identification of repeating patterns,” in Proc. of
the 5th International Conference on Digital Libraries
for Musicology, 2018, pp. 34–37.

[8] E. Manilow, G. Wichern, P. Seetharaman, and
J. Le Roux, “Cutting music source separation some
slakh: A dataset to study the impact of training data
quality and quantity,” in IEEE Workshop on Appli-
cations of Signal Processing to Audio and Acoustics,
2019, pp. 45–49.

[9] H.-W. Dong, W.-Y. Hsiao, L.-C. Yang, and Y.-H. Yang,
“MuseGAN: Multi-track sequential generative adver-
sarial networks for symbolic music generation and ac-
companiment,” in Proc. of the Thirty-Second AAAI
Conference on Artificial Intelligence, 2018, pp. 34–41.

[10] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and
P. Lamere, “The million song dataset,” in Proc. of the

12th International Society for Music Information Re-
trieval Conference, 2011.

[11] J. C. Brown, “Calculation of a constant q spectral trans-
form,” The Journal of the Acoustical Society of Amer-
ica, vol. 89, no. 1, pp. 425–434, 1991.

[12] C. Raffel and D. P. Ellis, “Pruning subsequence search
with attention-based embedding,” in IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing. IEEE, 2016, pp. 554–558.

[13] ——, “Large-scale content-based matching of midi
and audio files.” in Proc. of the 16th International Soci-
ety for Music Information Retrieval Conference, 2015,
pp. 234–240.

[14] F. Chollet et al., “Keras,” https://keras.io, 2015.

[15] D. Bogdanov, N. Wack, E. Gómez Gutiérrez, S. Gu-
lati, H. Boyer, O. Mayor, G. Roma Trepat, J. Salamon,
J. R. Zapata González, X. Serra et al., “Essentia: An
audio analysis library for music information retrieval,”
in Proc. of the 14th International Society for Music In-
formation Retrieval Conference, 2013.

[16] T. Chen and C. Guestrin, “Xgboost: A scalable tree
boosting system,” in Proc. of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, 2016, pp. 785–794.

[17] R. Brisson and R. Bianchi, “On the relevance of mu-
sic genre-based analysis in research on musical tastes,”
Psychology of Music, vol. 48, no. 6, pp. 777–794, 2020.

[18] A. Grover and J. Leskovec, “node2vec: Scalable fea-
ture learning for networks,” in Proc. of the 22nd ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, 2016, pp. 855–864.

[19] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Ef-
ficient estimation of word representations in vector
space,” arXiv preprint arXiv:1301.3781, 2013.

Proceedings of the 22nd ISMIR Conference, Online, November 7-12, 2021

188

