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ABSTRACT 

 
Realistic recordings of soundscapes often have multiple 
sound events co-occurring, such as car horns, engine and 
human voices. Sound event retrieval is a type of content-
based search aiming at finding audio samples, similar to an 
audio query based on their acoustic or semantic 
content.  State of the art sound event retrieval models have 
focused on single-label audio recordings, with only one 
sound event occurring, rather than on multi-label audio 
recordings (i.e., multiple sound events occur in one 
recording). To address this latter problem, we propose 
different Deep Learning architectures with a Siamese-
structure and a Pairwise Presence Matrix. The networks are 
trained and evaluated using the SONYC-UST dataset 
containing both single- and multi-label soundscape 
recordings. The performance results show the effectiveness 
of our proposed model. 
 

Index Terms— Multi-label audio retrieval, Sound 
Events, Similarity Measure, Siamese Network 
 

1. INTRODUCTION 
 
Humans have an inherent ability to match sound events 
based on acoustic similarity and the relationship between 
them [1]. Previous studies mainly focus on sound event 
detection (SED), investigating which sound events happen 
in an audio recording and when they occur [2]. In contrast, 
Sound event retrieval (SER) is retrieving audio recordings 
that are similar to a given input audio query [3, 4]. This 
similarity can be based on acoustic and/or semantic 
(symbolic) characterization [5]. SER has received far less 
attention than SED.  

Due to a growing number of sound recordings, sound 
designers face numerous challenges. The tasks of searching 
and listening to audio recordings from a large database can 
be repetitive and time consuming. SER research enables 

developing audio retrieval systems for browsing sound and 
assisting sound design. With SER models, engineers can 
design recommendation systems for audio recordings. 
Sound designers will find a more streamlined workflow to 
add suitable sound effects for films and games.  

Previous audio retrieval research mainly focuses on 
either acoustic similarity or categorization [4-8]. We neither 
simply use SED techniques to classify sound and retrieve 
the label, nor simply adopt audio fingerprinting to measure 
similarity. We consider both semantic similarity and 
acoustic similarity to be important for sound event retrieval. 
Audio recordings from different categories might sound 
similar, while recordings from the same category might 
sound different. This problem is more significant in the case 
of multiple labels (i.e., multiple sound events occur in one 
recording). Therefore, we propose a Siamese-structure to 
measure the similarity between pairs of audio recordings, 
which contain single-label or multi-label annotations. Since 
there is no established perceptual similarity measure 
between sound events, we designed a representation of an 
output matrix for the level of similarity between audio 
samples regarding multiple labels. This work focuses on the 
precision of the retrieval; efficiency is left for future work. 

 
2. BACKGROUND 

 
Audio fingerprinting computes a digital summary of an 
audio recording and matches against those stored in the 
database by comparing similarity [9]. The goal is to find the 
identical, similar, or distorted versions of a target recording. 
Audio fingerprinting has been used in music 
recommendation [6], video identification [10] and SED [11]. 
However, when searching for similar audio recordings based 
on sound events, we require both an acoustic similarity 
measure, and semantic similarity matching [3, 4]. 

To achieve this, we propose using a Siamese Neural 
Network (SNN), which contains two identical sub-networks 
that share weights [12]. SNN have been explored for 
representations of and content understanding in text, voice, 



images and video [12-15]. Regarding sound events, Jiménez 
et al. proposed an ontology-based neural network for SED, 
which considers a structured relationship between class 
labels [16]. The authors use an SNN to compute embeddings 
to preserve the ontology information. Manocha et al. 
designed a system performing single-label sound event 
retrieval. They propose an SNN approach to obtain 
embeddings of single-labeled audio recordings (i.e., only 
one sound event exists in a recording) [4]. Then, the authors 
use K-Nearest Neighbors of embeddings as the retrieved 
results. Their evaluations indicate that the model captures 
semantic similarity between recordings. Inspired by the 
previous study, we designed an SNN for multi- and single-
label SER. To the best of our knowledge, this is the first 
work studying multi-label SER based on deep-learning 
approaches. 
 

3. APPROACH 
 
3.1. Architecture of the Proposed Deep Learning 
Siamese-structure with a Pairwise Presence Matrix 
 
We propose an SNN-based approach to measure the level of 
similarity between a pair of audio samples. Fig. 1 shows our 
proposed model. First, we compute the log-Mel 
spectrograms of multiple frames of audio recordings. Next, 
these raw features are passed to the VGGish model [17], a 
SED model trained on a large-scale audio dataset, to obtain 
latent embedding vectors (See 5.1 for details). Then, a pair 
of embedding vectors is passed to a Siamese-structure.  

An SNN typically consists of two twin networks [12]. 
Each sub-network takes one input. Typically, to train an 
SNN, researchers use the contrastive loss function to 
measure the distance between a pair of input samples. If 
inputs are similar, then it should predict 1, otherwise 0. 
However, because our audio samples contain multiple labels, 
instead of using a contrastive loss, we concatenate the 
output embeddings from the Siamese-structure and pass it to 
a multilayer perceptron (MLP) network.  

The Siamese-structure consists of 3 layers. Each layer is 
composed of 128 neurons. The outputs of the Siamese-
structure are concatenated into a vector, which is passed to 
an MLP with 2 layers. The first layer consists of 256 
neurons and the second layer contains 128 neurons. After 
that, we adopt the attention module proposed by Kong and 
Yu  [18, 19]. As shown in (1), the predicted results can be 
weighted on information from different time steps, and 
ignore irrelevant sound segments such as silences. 𝑣(∙) is a 
Softmax function that normalizes along time steps to 
determine how much an embedded feature ℎ!  should be 
attended to or ignored. 𝑓(∙) are the prediction results of the 
output layer, which denote the classification output of a ℎ!. 
The ReLU non-linearity activation function is applied to all 
layers. We also added batch normalization in each layer and 
applied a dropout of 0.5 between all layers during training. 

 

𝑦 ℎ =  𝟏
𝒗 𝒉𝒕𝑻

𝒕!𝟏
𝑣 ℎ!!

!!! 𝑓(ℎ!)                 (1) 

Regarding the output of the proposed model, we define 
a three-column Pairwise Presence Matrix to represent the 
situations of each category for a pair of audio inputs so as to 
measure the level of similarity between them. For each 
category, we use one-hot encoding to represent three 
situations: both inputs contain it, neither contains it, or one 
of the inputs contains it. The level of similarity is the exact 
number of present and absent categories that two audio 
samples have in common. For example, the level of 
similarity of two samples in Fig. 2 is 4. For the output layer, 
we use a Softmax function with a categorical cross-entropy 
loss function. 

 
Fig. 1. Proposed Deep Learning Siamese-structure with a 

Pairwise Presence Matrix 
 

 
Fig. 2. Pairwise Presence Matrix  

 
Given an input audio query, we first create audio pairs 

between the query and samples in the database (i.e., training 
set). Then, we pass the pairs to the network to obtain the 
presence matrix. By summing the first and the second 
column of the matrix, we obtain the level of similarity (i.e., 
exact number of present and absent categories that two 
audio samples have in common) between the audio query 
and samples in the database. All samples in the database are 
ranked according to their similarity to the query and then the 
top K samples are returned. 

We believe both sematic categorical information and 
acoustic similarity are important for multi- and single-label 
SER. By using the VGGish model [17], and defining a 
pairwise presence matrix, we incorporate the semantic 
categorical information for the SER task. While comparing 
the embeddings of two audio samples together, we include 
the information of acoustic similarity.   



4. DATASET  
 
4.1. SONYC-UST dataset 
 
We used the SONYC-UST dataset [20] for the audio 
retrieval task. SONYC-UST is a dataset extracted from the 
Sounds of New York City project [21] for mitigating urban 
noise pollution. Researchers collected recordings from 50 
different sensors deployed in New York City. The dataset 
contains 2794 samples in total. There are 2351 samples in 
the training set and 426 samples in the test set, which 
contains 105 multi-label and 311 single-label recordings. All 
recordings are 10 seconds long and were recorded with 
microphones at identical gain settings. Researchers recruited 
individuals to provide weak labels for recordings based on a 
taxonomy involving 8 coarse- and 23 fine-grained 
categories [20]. We used coarse categories for the retrieval 
task (Fig. 2). This is challenging because various 
heterogeneous sources of noise pollution may overlap 
within the same acoustic scene and some categories, such as 
engine and machinery impact, sound similar to each other.  
 
4.2. Creating Pairs for Training 
 
Based on the weak labels, we create pairs of inputs for our 
model. When creating pairs, we intend to have balanced 
pairs regarding the coexistence of each category between a 
pair of samples. For each category, we selected a target 
sample (i.e., the first sample from the training set) and 
created 60 pairs by selecting: 1) 30 samples from the 
training set that have the same situation as the target sample 
(i.e., both samples contain this category, or neither contain 
this category) and 2) 30 samples from the training set that 
are opposite to the target sample (i.e., one of the samples 
contains this category).  Then, we repeat the process by 
selecting the second sample as the target sample, and 
continue until the last sample is used as the target sample. 
After iterating through all the eight categories, we removed 
duplicate pairs and ended up having 218173 pairs in the 
training set. Since our goal is to perform retrieval, during the 
testing stage we create audio pairs consisting of one item 
from testing set (i.e., a query sample) and another item from 
the training set (i.e., the database). The weak labels of a pair 
of audio samples are converted to the pairwise presence 
matrix as described in Section 3.  

 
5. EXPERIMENTAL SETUP 

 
5.1. Feature Extraction 
 
Given one-second audio excerpt, the VGGish model [17] 
computes the log-Mel spectrograms as raw features and then 
generates a 128-D embedding vector. Regarding the 
SONYC-UST, since each recording is 10 seconds, the 
dimensionality of the output of VGGish is 10×128. We also 
evaluated the performance of our model when only using 
log-Mel spectrogram. We converted the sampling rate to 
22050 HZ, and chose the window size of 4096 and a step 
size of 2048. We ended up having a 108×128 feature vector 
for each audio recording.  

5.2. Variations of Proposed Network: Single-model and 
Multi-model with or without Siamese-structure 

 
We explored three more variations of our proposed network: 
1) a version without the Siamese-structure, in order to 
evaluate the contribution of the Siamese-structure. 2) We 
split our original single-model architecture into eight sub-
models, each corresponding to one of the eight coarse 
categories. 3) We evaluated multiple sub-models without 
Siamese-structure. 
 
5.3. Network Settings 
 
We trained each model using the RMSProp optimizer with a 
batch size of 128 samples, a learning rate of 1×10−3. Due to 
the limited size of the dataset, we first select 10% of the 
training set as a validation set to determine the best number 
of epochs based on the validation error. Then, we combine 
the training set and the validation set together to train the 
model with the previously determined number of epochs. 
 
5.4. Evaluation Metric 
 
We use mean Average Precision (𝑚𝐴𝑃) as the metric for the 
retrieval task. The 𝑚𝐴𝑃  can quantify the precision of a 
sorted retrieved list with the number of true positives 
leading the list. Since we have multiple labels, we adopted a 
𝑚𝐴𝑃!@𝐾 metric [22], which is defined as follows:  
 

 𝑁𝑢𝑚 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ℎ𝑖𝑡𝑠 =  Π 𝑟!,! ≥ 𝑠           !
!!!      (2) 

 

𝐴𝑃!@𝐾 = !
!"# !" !"#$%$&' !!"#

 !(!!,! ! !)
!

Π(𝑟!,! ≥ s)!
!!!

!
!!!  (3) 

 

𝑚𝐴𝑃!@𝐾 =  !
!

𝐴𝑃!@𝐾
!
!!!                              (4) 

 

where 𝑄 denotes the length of query set (i.e., test set). 𝐾 
denotes the Top 𝐾 retrieved items, 𝑠 denotes the similarity 
threshold. To consider a retrieved sample as a positive hit, 
the level of similarity has to be equal or greater than a 
threshold (𝑠). For example, if the threshold is 7, the level of 
similarity has to be 7 or 8 between the retrieved sample and 
the query so that the retrieved sample can be considered a 
positive hit. 𝑟!,! denotes the number of identical labels (out 
of 8) between the q-th query recording and the i-th database 
recording, Π(∙) ∈ 0, 1  is an indicator function. 𝑚𝐴𝑃!@𝐾 
ranges between 0 to 1. A high value means that more top 
instances in the retrieved list are considered as positive hits.  
 

6. PERFORMANCE ANALYSIS 
 
Because there are no other similar approaches in the 
literature, our baseline consists of randomly retrieving the 
top K recordings for a given query. All our architectures 
significantly outperformed the baseline as seen in Fig. 3. We 
show the performance obtained when the query was a 
single- or multi-label recording. We adjusted the similarity 
thresholds from 8 to 7 and selected different values of 𝐾, 1, 
5, 10, 30, 50, and 100. 

From Fig. 3, we observed that having the Siamese-
structure always performs better than without it, which 



indicates its effectiveness to preserve similarity. Moreover, 
we observe that the 𝑚𝐴𝑃!@𝐾  of multi-label SER is the 
lowest among all experiments, implying that perfectly 
matching all categories between two samples is challenging 
when there are multiple sound events. Note that 𝑚𝐴𝑃!@𝐾 
of single-label SER is fairly high. This is because 
distinguishing single sound event is much easier. When 
decreasing the similarity threshold from 8 to 7, the task is 
easier and performance improves significantly. Even with 
allowing only 7 identical labels (out of 8), the retrieved 
sample is still satisfying in most cases.  

We evaluated the contribution of the attention module. 
We found that attention is better in the case of 𝑚𝐴𝑃!@𝐾 for 
single-labeled SER, 𝑚𝐴𝑃!@𝐾  for multi-labeled SER and 
for most 𝐾 values of 𝑚𝐴𝑃!@𝐾 for single-labeled SER. Fig. 
3 shows that in the case of 𝑚𝐴𝑃!@𝐾 for multi-labeled SER, 
the architecture without attention works better.  

Note that the multi-model architectures perform better 
than the single-model architectures (Fig. 1) in 𝑚𝐴𝑃!@𝐾 for 
multi-labeled recordings. Though multiple sub-models can 
learn specific semantic information for each category, the 
single-model incorporates well the inter-class differences of 

the coarse categories. Regarding features, we found that 
VGGish features perform significantly better than the log-
Mel spectrogram features in all tests. This is because 
VGGish embeddings come from a pre-trained model, as 
opposed to log-Mel features. 

 
7. CONCLUSION 

 
This work investigates the both single- and multi-label 

SER problem. We present a Siamese-structured network to 
incorporate both acoustic similarity and semantic similarity 
information. Moreover, we design a pairwise presence 
matrix for the representation of the level of similarity 
between multiple labels. We compared the performance of 
our model with several variations, and our results show the 
effectiveness of the model for the retrieval task focusing on 
the precision of the retrieval task. More information can be 
found at http://metacreation.net/multi-label-sound-event-
retrieval/. For future works, we will enhance the 
computational efficiency of the retrieval pipeline. We will 
also work on building larger datasets in order to scale these 
models to more categories. 

 

 

 
 

Fig. 3. Performance based on 𝑚𝐴𝑃!@𝐾 for the baseline, the Single-model and Multi-model with or without Siamese-structure 
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