Entertainment Computing 33 (2020) 100337

Contents lists available at ScienceDirect =] =
Entertainment
Computing
Entertainment Computing
journal homepage: www.elsevier.com/locate/entcom " ' s

Generative music in video games: State of the art, challenges, and prospects

Cale Plut", Philippe Pasquier

Check for
updates

Metacreation Lab, School of Interactive Arts and Technology, Simon Fraser University, Surrey, BC V3T 0A3, Canada

ARTICLE INFO ABSTRACT

Keywords:

Games

Ludology
Generative Music
Music

Audio

Game Music

Music is a common element in almost all video games. Most music in games is written by a human composer, and
played as a linear piece behind gameplay. Adaptive and/or Generative music systems can be used to extend the
musical content or create new musical content using algorithms and AL While there is research into these
systems, there has yet to be an organized examination of their architecture and use. We present a taxonomy of
generative music in games, to allow for examination and discussion of generative music systems. In doing so, we
also present a survey of the current state of the art of generative music systems in games, and discuss challenges

and prospects of generative music for games.

1. Introduction and motivation
1.1. Game audio and music

The video game industry is one of the largest media industries in the
world, with 65% of American adults reporting playing video games [1].
As the games industry becomes larger, more and more attention is being
paid to the rigorous study and examination of games. While much of
this study centers around the design of interaction, or the visual aspects
of games, one of the most key components of games is audio. Even
before the advent of digital games, audio has been a key component in
the pure foundations of play. Audio is so key to play that it transcends
human designed play — young animals vocalize their play with yips and
growls [2,3]. Audio is so fundamental to games that in 1958, when the
first video game Tennis for Two was developed, its gameplay was ac-
companied by audio.

Game audio is most commonly classified into the categories of
speech, sound/ effect, and music [4]. Speech refers to voiced game audio
that emanates from a character in a game. This includes the Player
Character (PC) and Non-Player Characters (NPCs). Recordings of
human voices are the most common source for speech, but speech may
also be synthesized [5]. Sound/Effect generally refers to audio elements
that are aperiodic and nonmusical, often inspired by real-world sound
effects such as a gun firing or wind rustling through trees. Sound/Effect
elements may also be abstract and artificial, such as Pac-man’s “wakka-
wakka”, the sound of Mario jumping, or a simple beep when a button is

* Corresponding author.
E-mail addresses: cplut@sfu.ca (C. Plut), pasquier@sfu.ca (P. Pasquier).

pressed [6].

The final classification of game audio is music, and is our focus.
While defining “music” is a contentious issue, we use Luciano Berio’s
definition of music as anything that intends to be music [7]. Generally
this is pitched, and has some regular division of time, but these features
are not necessary. It is important to note that while the speech/sound/
music divisions are useful to describe audio content in games, the di-
visions are descriptive rather than prescriptive, and the lines between
these classifications are not set in stone. In short, while we restrict our
scope to game music, we take an inclusive perspective on what con-
stitutes game music.

1.2. Generative and adaptive music

The most common use of music in games is to play a linear, com-
posed piece of music during the gameplay. In many games, music is
directly tied to the current level' and/or game state. With linear com-
posed music, the music begins playing through a musical piece when
the associated level is loaded. If the music reaches the end of the piece,
the music loops. When a new level is loaded, the music either abruptly
changes or quickly fades out, and is replaced with the new level’s as-
sociated music. This use of music is often associated with older games
such as 1985’s Super Mario Bros. [8], 1986’s Castlevania [9], and 1987’s
Mega Man [10]. However, lienar composed music is still in use in games
such as 2009’s Final Fantasy XIII [11], 2014’s Shovel Knight [12], and
2017’s Pyre [13].

! “Level” refers to a section or area of a game that is delineated from other sections or areas of the game. There are many terms for “level” across game genre and
development tool. For instance, in fighting games, each fight takes place on a “stage”. In the Unity engine, assets are grouped and loaded by “scene”. These terms are
interchangeable. When discussing levels, we will use the internally agreed upon term from the genre, tool, or community

https://doi.org/10.1016/j.entcom.2019.100337

Received 8 July 2019; Received in revised form 2 November 2019; Accepted 6 December 2019

Available online 16 December 2019
1875-9521/ © 2019 Elsevier B.V. All rights reserved.

http://www.sciencedirect.com/science/journal/18759521
https://www.elsevier.com/locate/entcom
https://doi.org/10.1016/j.entcom.2019.100337
https://doi.org/10.1016/j.entcom.2019.100337
mailto:cplut@sfu.ca
mailto:pasquier@sfu.ca
https://doi.org/10.1016/j.entcom.2019.100337
http://crossmark.crossref.org/dialog/?doi=10.1016/j.entcom.2019.100337&domain=pdf

C. Plut and P. Pasquier

Linear composed music can also be used without clear level deli-
neations. As computer memory has become more plentiful and pro-
gramming tricks allow for seamless loading of content, games have
relied less on clear level delineations between game states. The “open-
world” genre type exemplifies this, with open-world games minimizing
or eliminating level delineations all together. Such games still often
have clear delineations between game states. The most common state
change is one between “combat” and “non-combat” gameplay. 2017’s
Hellblade: Senua’s Sacrifice [14] is an example of this state change. In
Hellblade, there is a clear change between combat and non-combat —
Senua draws her sword, the environment changes to create a small
inescapable arena, the camera slightly changes its angle, and the
players controls change to allow new actions. The music in Hellblade
also changes with this state change. The “non-combat” music quickly
fades out and the “combat” music quickly fades in. Games such as
1998’s Baldur’s Gate [15], 2009’s Batman: Arkham Asylum [16], and
2016’s XCOM 2 [17] use this technique as well. It is important to note
that this technique is not purely a more advanced game design or use of
music, but an alternative structure. In Final Fantasy X, there is a level
change between non-combat and combat. In Final Fantasy XII, there is
simply a state change. In Final Fantasy XIII, the level change returns,
and in Final Fantasy XV, there is no level change.

There are two primary techniques to extend linear, composed music
in games. The first technique — adaptive music — addresses the linear use
of music. Adaptive music is sometimes called “interactive music”, and is
music that reacts to a game’s state [18]. Adaptive music can provide
large amounts of unique music from limited musical content. Adaptive
music directly connects musical features to game variables. These fea-
tures can include adding or removing instrumental layers, changing the
tempo, adding or removing processing, changing the pitch content, etc.
These changes in adaptive music are directly linked to gameplay vari-
ables. The adaptivity of music can be understood as a dimension. Low
levels of adaptivity may only adapt to a small set of in-game variables,
while higher levels of adaptivity may adapt to tens or hundreds of in-
game variables.

One use of adaptive music can be seen in Luftrausers [19]. In Luf-
trausers, composer Julio “Kozilek” Kallio wrote a single 120 s musical
piece. This piece of music is split into 3 groupings of instruments, each
of which has 5 different arrangements, for a total of 125 different ar-
rangements that can provide 4 unique hours of music. These arrange-
ments are linked directly to the player’s selection of parts that makes up
their avatar ship, as seen in Fig. 2. Adaptive music has been shown to
increase a players’ perceived and experienced tension during gameplay
[20].

The other technique - generative music — addresses the creation of
musical content itself. Most music is composed by an individual or team
of human composers. Computational creativity is a field that explores
the automation of creative tasks, and Musical metacreation (MuMe) is a
subfield of computational creativity that addresses automating the
creation of music [21]. Generative music [22] is music that is created via
systemic automation, and is sometimes called procedural music,

Entertainment Computing 33 (2020) 100337

musical metacreation, or algorithmic music. These terms are mostly
synonymous and can be used interchangeably, but we will use “gen-
erative music” for simplicity.

Generative music can provide endless unique music in a game, and
can be adaptive on a much deeper level than composed adaptive music,
providing music that is individually tailored to the player’s actions in a
game [23]. Despite these potential benefits, generative music has not
yet achieved widespread use in video games.

There is debate as to whether all game music can be considered
generative [24,25]. Because games are interactive, the exact timings of
events is different for each player [3], which means that the musical
timings will also be unique to each player. We believe that a refinement
on what constitutes systemic autonomy is necessary to make mean-
ingful distinctions for games. As an example, Mozart’s Musikalisches
wiirfelspiel, or musical dice game, is a well-known piece of generative
music [26] in which the score is made up of multiple musical sections,
each of which can transition to any other section. To play the piece, a
performer/player rolls dice to determine which sections to play in
which order. If we consider Mozart’s dice game as a game rather than a
music performance, we can consider each dice roll to be a game state
change. Because the music is directly responding to the game state
change, this does not present systemic autonomy from the game state
and therefore the dice game could be described as having composed
adaptive music, not generative music.

One problem with this understanding of the Wiirfelspiel is that the
music and the gameplay of the game are inseparable — The game has no
gameplay outside of constructing a musical piece. While there are video
games in which the music is a core component of the gameplay loop,
these games generally provide gameplay that is not purely musical. In
“musical exploration game” Fract OSC [27], the player solves puzzles by
moving and interacting with abstracted physics objects, each of which
directly controls parameters on a virtual synthesizer. While the music is
reactive, and is directly changed based on the gameplay, the music is
not the only component of the gameplay. In the Musikalisches wiirfel-
spiel, there is no gameplay other than the arrangement of the music.
This differentiation of gameplay and musical construction is key to our
understanding of generative music in games.

For our purposes, music can be considered generative within a video
game if the music is produced by a systemic automation that is partially
or completely independent of the gameplay. This independence can
have a large range of possibilities. A generative linear system may be
almost completely independent of the gameplay — a piece of music can
be requested, and is then linearly played through regardless of the
gameplay. A highly adaptive generative music system may use a large
array of game variables to inform the generation of musical content.

Fig. 1 gives examples of games that use either generative, adaptive,
or both techniques in their music. The two most common uses of music
in games are composed linear and composed adaptive music. We focus this
survey on uses of both generative linear and generative adaptive music.

Generative Spore DOOM(2016)
Mega Man Final Fantasy XV

Composed Shovel Knight Luftrausers
Linear Adaptive

Fig. 1. Examples of games with varying degrees of adaptive and generative music.

C. Plut and P. Pasquier

" WEAPON: CANNON
BODY: BOMB
ENGINE: UNDERWATER

Fig. 2. Luftrausers selection of gameplay parts that influence music [19].

1.3. Motivation

Most games have a soundtrack with between 1 and 4 h of music, but
gameplay time can range from 6 to over 100 h [28]. This often leads to
the player hearing musical tracks repeated many times. While repeti-
tion is important in music, too much repetition can break immersion
and become grating to the player [29,4]. One contributing factor to the
repeated music in games is cost. As an example, Pillars of Eternity [30]
takes an average of 60 h to complete. If all 60 h of gameplay were to be
filled with unique composed music, the budget of the game would
roughly double [31].

A generative music system can provide an amount of content well
beyond what a composer is capable of at a much lower cost-per-minute
of music. This would allow the designers of a game like Pillars of Eternity
to fill all 60 h of gameplay with unique music at a cost well below the
cost of 60 h of composed music. Generative music may even be used to
provide additional music without real-time generation — a composer
may use generative music to create a large library of music for an
adaptive score.

Generative music also allows the player to customize and persona-
lize their music. Adaptive music allows for music to more closely align
with the actions of an interactive game, and has been shown to have a
greater effect on the player’s experienced tension than linear music
[20]. However, adaptive music cannot necessarily match the extreme
breadth of gameplay possibilities. Generative music can be composed in
real-time as the player interacts with the game, allowing it to adapt
more completely to the player actions.

Finally, generative music can empower and assist human compo-
sers. While constraints on creative freedom often paradoxically allow
for greater creativity [32,4], too many creative constraints can be
frustrating for human composers, and can limit their expressive range.
When composing for adaptive music, composers must ensure that any
of the possible combinations of music that can occur will sound ac-
ceptable together. This highly restricts the composer’s possible ex-
pressive range. Generative music can allow composers to focus their
attention on the artistic aspects of composing music, and not on the
technical details of preparing music for adaptivity. This will allow for
greater creative agency for game designers, audio designers, and com-
posers.

1.4. Challenges

Although generative and adaptive music is becoming more popular
in the industry, linear composed music represents a majority of games
music, and generative music remains a niche field in both the industry
and academia.

Generative systems can also be resource-intensive, and games are
often pushing the limits of computing power without generative music

Entertainment Computing 33 (2020) 100337

[33]. While independent “indie” games often focuses on non-technical
artistry, AAA (large-scale, big-budget) games continue to often push the
limits of technology, with computational resources primarily directed
towards graphical fidelity and fidelity of computational simulations
[34]. While historically the technology for games music has kept pace
with hardware, the relative resources allocated for music in games re-
mains slim [4].

Another reason that generative music may not have received
widespread attention in the games industry is that it is often un-
predictable and can be difficult to control. The audio director of No
Man’s Sky (26), Paul Weir, notes that generative music was used in the
game with an acknowledgment that it could produce “worse” music
than composed music [5]. Generative music can also display the
“10,000 bowls of oatmeal” problem [35,36], where the music is ac-
ceptable, but monotonous.

Games are expensive to make, with some game budgets reaching
into the tens and hundreds of millions of dollars [4], and emerging
technology also requires investment. It is understandable that games
companies are not investing in a more expensive, less performative
technology that may result in worse music, compared to simply using
linear composed music. This lack of industry investment also means
that while there is academic research in this area producing advanced
systems, the research often takes place without industry collaboration,
which limits the academic systems.

While there is some academic research into generative music for
games, the research is at a very early stage. Often, systems with a stated
goal of integrating into games will not have any integration into games
[28]. Additionally, the design decisions for many systems are based
entirely on practice and theory [37,33]. Finally, the evaluation of
generative systems often takes place with either very limited video
games [38] or without any integration into a video game at all [39].
Without clear and informed design goals or formal in-game evaluation,
the benefits of generative music in games have not been demonstrated
yet. This in turn results in less opportunity for academic collaboration
with industry to advance the field.

A challenge in discussing generative music in games is that there is a
wide range of poorly defined terminology in use in the field, and this
terminology is often used incorrectly [5,4]. We present a typology of
generative music in games, in the interest of allowing for more struc-
tured discussion of the state of the art. We use this taxonomy to present
the state of the art as we know it, including peer-reviewed and pub-
lished papers, public presentations and interviews, and industry uses.
We survey both the research and the industrial implementations of
generative music in games, and discuss the challenges and prospects of
using generative music in games. When discussing a game that uses a
system, or a system itself in the text, we refer to Table 1 using the
convention system name (#).

2. Typology of generative game music systems

For our typology, we adapt the language used in the MuMe com-
munity [21]. The alterations that we make are driven by the interactive
nature of games, and the unique requirements that games have for
music. Our identified dimensions are shown in Fig. 3, and as before are
to be understood as descriptive rather than prescriptive. In Fig. 3, the
musical dimensions are displayed with their contextual relationships to
each other, as we will discuss in Section 4. We note that many di-
mensions are not mutually exclusive, and a single system may address
multiple aspects of many dimensions.

We have examined 34 generative musical systems from games, and
have identified 10 dimensions that form a typology. These dimensions
can be grouped into three dimensional types:

e Sections 3 and 4: Musical Dimensions. Due to the complex in-
teractions between musical dimensions, we will first define the
terms in Section 3, and then describe their interactions in Section 4.

Entertainment Computing 33 (2020) 100337

C. Plut and P. Pasquier

SNV
POXIIN J1j0quIAS (o1Seyo01S) NNY VD dLIdUD aandepy judiquy d1RS83Ip-UON uQ 910N [eIUOZLIOH JuswedueLIy 6102 /wISAS JIsnjA dandepy e
[ewIaIXy orpny paseq-any oymads aandepy jusiquy d1RS83Ip-UON uQ juswnIISuy V/N 9OURULIOJID] 6102T mQ ady €€
[eWINXH orpny paseq-any Jy1ads Ieaury padimog onadarp o 9ON V/N 9DURULIONID 8102 eyonyD (4
JusuedueLry
[euILlxXy orjoquiks V/N JLRULH aandepy jusiqury V/N V/N V/N PXIN ‘uonisoduwo) 810T QALIPOPOIN 1€
paseq siojowrered 2DUBUWLIOJId
[eurIxy drjoquIAg -y ‘VH dnseyd0is JLIUDH aandepy V/N V/N uQ Isuf ‘proyD 910N PIXIIN ‘uonisodwo) 1102 asodwoDe1oN 0g
Ten3urg
paures] J1j0quIAS plaN:diplaly JLIBU™D aandepy padamog onedarp uo pioy) 910N TeIuoZLIoH uonisoduro) 102 93 JO dUAIPNY Y], 62
9DURULIOLID
[euIaIXy J1j0quIAS JTISBYI0IS JLIRURD aandepy judiquy d1RS83Ip-UON uQ pioyd [eIUOZLIOH ‘uonisodwo) 9102 Py2a14 8T
[eWIIXY orpny paseq-any oymwads JIeaury JuRIqUY d1RS83IP-UON uo aselyq TeIuoZLIoOy JuowSuRIy 9102 (9102) INOOd Vil
[euIIXy opny paseq-any Jy1ads Ieaury juRIqUY 2119391p-UON io) V/N PXIIN JuowRSueLy 9102 ANS s, ueIN ON 9z
pauIea] orpny paseq-any oydads Ieaury JwRIqUY d1RS8AIP-UON uQ aseIryq [eIUOZLIOH JusuRdueLIy 5102 BIDUBUOS o4
pauIed] SI[oquIAS o1seY20IS SLIBUDD Ieaur] V/N V/N uo pIoyD 910N [eIU0ZLI0H uonsodwop S102 ‘Te 19 spP8uy ¥T
preyen
paurea] J1[0quIAS JTISBYI0IS JLRURD Iedury V/N V/N uQ pIoyd [eIu0ZLIOH uonisoduwo) +102 pue ‘uofIweH ‘@IOWIND €T
QOURULIOJNID]
[eWIIXY orpny V/N Jymads aandepy padanog onedarp 3o Juawnnsuy ‘oseryd POXIN ‘quawsSueIiry €102 SALIPIAQIPNY fad
[euIIXy opny J1ISBYI0IS Jy1oads aandepy jusiquy d198a1p-uoN 3o dnoin -ysug [eonIaA JuowSueLy €102 SN ToquIBWIY 12
[euIRIxXy opny paseg-a[ny oymads aandepy padios d1e8aIp-uoN uQ 910N V/N QOURULIOJID] 1102 rouuny duir g 0T
[eWIIXY orpny paseg-s[ny oymads Ieaury pa21nos 2nadarp-uoN uo 30N V/N OURULIOJID] 1102 uspy jo pyd 61
[euwraxy orpny onseyd01s pisclichy) Ieaury juwIquy 21139Ip-UON uQ aseIyd TeIuozZLIoOy JuowSueLy 1102 JoAe[d N'IN YL 81
[euIXy opny paseq-a[ny Jy1ads Ieaury juRIqUy 911939Ip-UON uo dnoin -Isug [eonIA JuowSueLy 0102 PIOA YIeq L1
[ewINXy orpny paseq-any oymwads Ieaury uRIqUY d1RS83Ip-UON uQ JjuawInnsuy ‘Oseryd POXIN JusuRSueLIy 0102 uondwapay peaq pay 91
S9ASIYL
[euIa)Xy orpny paseq-any oywads Jeaury JwRIqUY d1RSAIP-UON uQ aseryd [eyuozZLIoy JusuRSueLIy 6002 Suowry :g payreydun S1
[eUINXY opny paseq-any oymads aandepy jusiquy d1R83Ip-UON uQ aselyq POXIN JusuRSueLy 8002 Ieppuq s Adue[) wof, b1
9OURULIOJIDd
[euIAXy J1joquIAS paseq-a[ny Jy1oads Ieaury juRIquy 21339Ip-UON uo QJON [eIUOZLIOH ‘uonyisodwo) 8002 a10dg €1
JusuRSueLy
[eWINXy POXIN paseq-any pIsElicty) Ieaury V/N V/N 3o suj ‘910N POXIN ‘uonisoduron 8002 SINDV /2388y z1
[eWINXH orpny paseq-any Jy1oads Ieaury JuRIqUY d1RS83Ip-UON uo JuswInIsuy [eOIMDA JuowRSueIry S10Z2-+002 S9LISS O[eH 11
[euIa)Xy orpny paseq-anyg oyads Jeaury uRIqUY d1RSAIP-UON uQ aseryd [euozLIoy JusuRSuRLIY 002 yseq IouIq o1
[ewIIXy opny Jnseydo01s oymwads aandepy jusiquy d1R83Ip-UON uQ JuewInusuy ‘Oseryd POXIN JusuRdueLy 1002 auruQ Aydreuy 6
[eWINXH orpny paseq-any oy1oads Ieaury padinos 2nadarp-uoN uo 3ON V/N 9DUBULIOJID 1002 Z3Y 8
[euIa)Xy J1[0quIAS paseq-anyg oymwads aandepy judiquy d1RS83Ip-UON uQ JeRg [eIuozZLIoy JusuRSuRLIY 0002 IDAQI04 SIATT SUQ ON L
[eWINXY opny paseq-any pIsElicty) aandepy jusiquy d1R831p-UON 3o V/N TeIuOZIIOH JusuRdueLy 8661 DNIA/2Suny 9
[eWINXY J110qUIAS paseq-any oymwads aandepy RIqUY d1RS83Ip-UON uo 3ON TeIuoZIIOH uonisoduro) 8661 I9ILIMISOUDH [
orpny
[euIa)xXy Orj0quIAS paseq-any JLIRURD aandepy V/N V/N 3O ‘uo 2Insea POXIIN JusuRSuRLIY 9661 JISNIAIIRIIQ b
[eWIIXY J1j0quIAS paseq-a[ny pIsElichy) Ieaury V/N V/N uo QINSBIAl TeIuoZIIOH JuowRSuRIIY 1661 EN1 €
[euIAIXy J1joquIAS paseq-amy Jy1oads aandepy pasinos ona8arp uo JON V/N OUBULIONID] /861 £2010 4
[euIa)Xy J1j0quIAS paseq-any oymwads Jeaury uRIqUY d13RSAIP-UON uQ 9JON ‘eseryd [eIUOZLIOH v 4861 19ze[qred 1
S [edisny - “day [edtsniy unpuody "usn fersusn Aandepy sdusIqUIY S19891 puH Aremuern Ayreuondanq YSe[, 9ANRISUID Iedx wo)sAg/ouren Toquinn
SUOISUIWIP 9INIINIYIIY suorsuawip Aejdauren SUOISUSWIP [BIISNIA uonedynuapy

*AUWIOUOXE] UTYIIM PIUTUIBXD SUIDISAS JTWDPEIR pPue Jwes Jjueixy

1 9IqeL

C. Plut and P. Pasquier

Generative Task

—(Composition \\

Horizontal

- Diagetic]|

L Non-Diagetic

Entertainment Computing 33 (2020) 100337

________ fm o

i [Musical Representation

— Symbolié)

L Audio)

(Musical knowledge Sourcej

—External

|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
| 1 — Learned
|

|
(Adaptivity /Autonomyj w
|

(Generality of the system)

Measure
Phrase

Vertical 5
I Single Instrument
— Instrument Group |:

— Performance

Note
Inst. Parameter
Instrument

Grid/Groove

On Grid:

Off Grid)

Musical Dimensions

—1 Note
T
— Chor
c—— —/Sourced\,\
ertica —
— Note
— Chord
— Arrangement | (1inear)
Horizontal Adaptive

1
I
I
I
I
1
I
I
I
1
1
I
I
I
|
i1 —{Ambient
I
|
1
I
I
I
1
|
I
I
I
1
|
I
I

________ ' Rule-Based

— Generic

—'Speciﬁci

(Generative Algorithm)

—Stochastic

i —{Genetic Algorithni)

-— Other Approaches

|
I
|
|
I
I
' Artificial Neural Network
i 4 .
I
|
I
|
: Architecture Dimensions

Key for musical dimensions:

.| Directionality
|

Fig. 3. Typology of generative music systems for games.

These dimensions describe how a system structures music.

e Section 5: Gameplay dimensions. These dimensions describe both
how the generated musical content is used in the game, and how the
musical generation is informed by the gameplay.

e Section 6: Architecture dimensions. These dimensions describe
inner structure, data, and algorithms used by the generative music
system.

3. Musical typology definitions

The musical dimensions address a system’s relation to its musical
output. Our four identified musical dimensions are generative task, di-
rectionality, granularity, and grid/groove. Music is multifaceted, and ex-
amining any dimension out of its musical context provides only a par-
tial understanding. We begin our descriptions of musical dimensions by
introducing and defining common musical terminology. We then dis-
cuss the interactions between these musical features that constitute the
musical dimensions of our taxonomy.

While there are many ways to analyze music, we use western music
theory to describe our musical dimensions, as we believe that it pro-
vides a structure for describing and taxonomizing the musical output of
examined systems. Most music for games falls within the western tra-
dition of music, with non-western instruments or harmonies primarily
used as a special musical effect [4].

3.1. Generative task

The first musical dimension to consider for a generative system is
the generative task that the system addresses. This dimension describes
what the system generates. While there are many tasks that a system
can address, there are three over-arching families of tasks that gen-
erative music systems for games can address:

3.1.1. Composition
The composition task addresses the creation of new music, and the
creation of new musical structures, entirely through some process.

3.1.2. Arrangement
The arrangement task addresses the recombination of extant mu-
sical elements in new ways.

3.1.3. Performance/interpretation

The performance task addresses the interpretation of extant music.
The line between the performance and composition tasks is not a de-
finite one as musical elements such as dynamics (volume) may be in-
cluded in the composition or left to interpretation. A generative music
system addresses the performance task if the music that it alters and
interprets exists separately from the interpretation.

These tasks are not mutually exclusive, and a single system may

C. Plut and P. Pasquier

address any combination of tasks. Most of the systems that we have
surveyed address a single task, though Ballblazer (1), Agate/AGMS (12),
Spore (13), Audioverdrive (22), Anthony Prechtl system (28),
MetaCompose (30), and Melodrive (31) address multiple tasks.

3.2. Directionality

The second musical dimension to consider for a generative system is
the directionality of the systems manipulation. Sheet music is arranged
with time progressing from left to right in each musical system. Musical
events that happen at the same time are represented in sheet music by
appearing at the same horizontal position within the musical system.
Because of this arrangement on the page, music can be examined hor-
izontally or vertically, which is common in music theory. This is re-
flected as well in the concepts of horizontal resequencing and vertical
layering [4] — horizontal resequencing modifies music across time, and
vertical layering modifies music at points in time. The horizontal di-
mension of music represents the way that the music unfolds over time.
The vertical dimension of music represents the way that the music fits
together with itself at any single point in time. Systems can also act in
mixed or hybrid directionality, manipulating both the horizontal and
vertical dimensions of music.

3.3. Granularity

In music, individual elements combine to create complex groupings
of features. These groupings also combine to form more complex meta-
groupings, which can continue to combine in increasing complexity.
The granularity dimension addresses what level of groupings the system
manipulates. The exact manipulation of different granularity levels
depends on both the task and direcitonality of a system, though there
are a few commonalities across music:

3.4. Horizontal properties

3.4.1. Note

A note is a single musical event. Notes usually have a pitch, but this
is not necessary. Notes usually have a duration between 0.125 and 2.0 s,
though may be longer or shorter. While other terminology exists for
musical events, the differences are purely semantic. We continue to use
western music theory inclusively in this case and will refer to any single
musical event as a “note”. Each note in music has several parameters
that describe the note. These include but are not limited to: pitch, onset
time, duration, volume, attack, decay, sustain, and release.

3.4.2. Beat

A beat is a regular division of time in music. Beats generally have a
length of between 0.3 and 1.0 s. This is measured in music by the
number of beats in a minute. While this range falls within the range of
individual notes, a key differentiation between beats and notes is that
beats generally maintain a similar duration for longer periods of time,
while note are much more variable. This means that a single note may
have a duration anywhere from a fraction of a beat to multiple beats. A
beat may also be understood as any regular tick, and the terms may be
used interchangeably.

3.4.3. Measure
A measure is an organized collection of beats. Most commonly, a
measure has either three or four beats.

3.4.4. Phrase

A musical phrase is a collection of notes that combine to form a
musical idea. Phrases are most often between four and eight measures
long, and can also be combined together to create longer phrases.

Entertainment Computing 33 (2020) 100337

3.4.5. Chord

A chord is any selection of two or more notes that are meant to
sound together. These notes may either play at the same time or may
arpeggiate, playing the notes of the chord across time with the intention
that they are heard as a single unit. While the creation of a chord is
within the vertical dimension, chords may also be treated as a musical
unit — the notes C-E-G can be described as simply a C Major chord.
When chords are arranged horizontally in series, this is called a chord
progression.

3.5. Vertical properties

3.5.1. Instrument parameter

In acoustic music performance, a performer of an instrument has a
variety of ways to alter the timbre, dynamics, envelope, and more as-
pects of the sound of their instrument. Digital instruments also have
parameters that may be similarly altered.

3.5.2. Instrument

An instrument is a single, internally consistent source of sound, that
can be heard as a single musical entity across time. In most cases, a
musical phrase will not change instruments midway through, though
there are exceptions.

3.5.3. Instrument group

Multiple instruments are often grouped together in music.
Instruments are often grouped together due to having similar sonic
qualities or similar musical function [4], but may be grouped in any
combination.

3.5.4. Chord

As mentioned, a chord is any selection of two or more notes that are
meant to sound together. When chords are manipulated along the
vertical dimension, individual notes are combined to create or manip-
ulate chords, rather than using common, pre-defined chords.

3.6. Grid/groove

While the previous dimensions describe the way that systems gen-
erate music through time, the Grid dimension describes the relationship
that the music has with time. One of the most common interfaces for
building drum tracks is a step sequencer, which divides each measure
into 16 equal steps, equivalent to one 16th note each. Trackers, another
common interface for music composition for video games, also arrange
the music as a grid of equal steps. The grid dimension describes whether
a system plays musical events at regular, perceivable divisions of time.
Another way to describe this dimension is whether the time deltas
between musical events maintains a consistent, even ratio with each
other.

3.6.1. On grid

Systems that are on grid restrict the timings of their musical events
to some regular division of time. Systems that are on grid are sometimes
described as having a “groove”, though the term is poorly defined. Rez
(8) organizes its musical events on a grid — when the game triggers a
chord cluster from player events, the exact timing is changed to fit
within an 8th note groove.

3.6.2. Off grid

Systems that are off grid do not restrict the timing of musical events
to any regular division of time. Such systems generally do not restrict
the timing of musical events to a regular pattern. The generative system
used in Spore (13) sometimes plays patterns with rhythmic regularity,
though the beginning point of any pattern is not restricted to a regular
division of time.

C. Plut and P. Pasquier

= :
7= ! :] ‘] ‘
oyl A : | 4 —
© = =2 = Jjg
. -
Y —— —
IR/ R B [: |
4 = = e S S
4 } I T
] ; ; . ; : jm—
: ; ; ; ; | ———
] E — Ee= o I—
o E ———2
B
| M|
. & R
¥ = - :
o " —
= = = = =
)
4 4 | 1L | 4
% p=——— 2 % S 2
E! Ef E ! P oo
D < &+ = < ©
(4
5 i : .
2 S S s
° 3 =IENENE
== = 2 2 - 2 =
4
4 '
! t T ;
- < =
D = £ Cd s
D E
&2 N I — o
=2 = =
: : 3 -

Fig. 4. Individual phrases for use in horizontal arrangement.

4. Interactions between musical dimensions

When the dimensions of Generative Task, Directionality, and
Granularity are taken out of musical context, they provide an in-
sufficient and incomplete understanding of the musical structures that a
system manipulates. To understand the relationships and dependencies
of these dimensions, we must also examine several common musical
interactions that place these dimensions in the proper context.

Our examined interactions are the most common combinations of
the dimensions of task, directionality, and granularity. As before, these
common combinations are not mutually exclusive. It is possible for a
single system to automate both horizontal and vertical composition, or
to automate horizontal composition on a note level of granularity,
vertical arrangement on an instrument level of granularity, and the
instrument parameters of performance. We also note that the grid di-
mension does not depend on nor influence these interactions, and is a
separate musical dimension.

4.1. Horizontal composition

Horizontal composition systems automate the creation of music
across time. This may be on one of two levels of granularity:

4.1.1. Note

Horizontal composition systems that function at the note level of
granularity automate the creation of new music by selecting a series of
individual notes as they will be heard through time. Note that some
note-level systems may also create larger groupings of notes that can
later be used by an arrangement system, which is similar to the use of
leitmotifs in composed music. The system by Cullimore, Hamilton, and
Gerhard(23) addresses the composition task and functions at the hor-
izontal note level.

4.1.2. Chord

Horizontal composition systems that function at the chord level of
granularity automate the creation of chord progressions. These chords
may either be selected from common chords (e.g. C Major), or may be
built procedurally with vertical composition. MetaCompose (30) gen-
erates chord progressions by choosing common chords from a tree,
while addressing the composition task.

Entertainment Computing 33 (2020) 100337

4.2. Vertical composition

Vertical composition systems automate the construction of music at
points in time. Such a system exclusively functions on a note level of
granularity, combining notes to create chords. We have found no sys-
tems that fit our scope of generative music for games that exclusively
address the composition task in the vertical direction. However, there
are systems that include a chord-building element. The Audience of the
Singular (29) considers the vertical note dimension while composing
music.

4.3. Horizontal arrangement

Horizontal arrangement systems automate the combination and
recombination of composed musical beats, measures, and phrases in
new ways.

4.3.1. Beat

Horizontal arrangement systems that function on a beat level of
granularity may either combine individual composed beats together to
form larger collections of beats. They may also instead combine larger
musical groupings together, but have the option to alter the music at
each beat. Therefore, a beat-granularity horizontal arrangement system
may play through phrases completely if left unattended, but choose to
change which phrase is playing mid-way through the phrase at a spe-
cific beat. In No One Lives Forever (7), the system plays through phrases
entirely while in a single game state, but can transition to different
musical phrases on any beat.

4.3.2. Measure

Horizontal arrangement systems that function on a measure level of
granularity are almost identical to those that function on a beat level of
granularity. These systems can either arrange composed measures to-
gether, or have the option to alter longer phrases at any measure. The
former is more common at the measure level of granularity than it is at
the beat level of granularity. Mozart’s previously mentioned
Musikalisches wiirfelspiel is an example of a horizontal arrangement
system at the measure level of granularity.

4.3.3. Phrase

Horizontal arrangement systems that function on a phrase level
arrange composed phrases together across time to create more com-
pleted musical pieces. Figs. 4 and 5 provide an example of how hor-
izontal phrase arrangement functions. In Fig. 4, various musical phrases
are provided. In Fig. 5, these phrases are combined across time to create
a novel musical piece. Complete musical phrases generally have a
duration of 8-32 s. Because changes in game states may occur at any

i ; " " " ;
Mg ——a—— e a1 —
o & = = O':#; Ed
A — B
= — —
— — -
B
0 I I 1
, . , : — :
B :) . .
i~ H: t i o t
Z E vt
B (Cont) A
| N ‘ =
5 — —
3 = Z: — —
J : — 0
— —
o o > g—
o) I | | | 4
I e —
: —t—
ﬁev' 7o [& [2 & | [g°=ele
D) -+
A(cont) fc : 8
G R e =
—_— R D R e ~ e
e == s >
. e e

Fig. 5. Sample horizontal arrangement.

C. Plut and P. Pasquier

M
- -
DEN 2= 1=} Cas Sl
H
— g
e
SEsnias=pmsasne ans SNI-Ser-Sei= oen Sctanis
;’j’#;(;’;’; 00 99 99 90 oV 9 o9 0%
S T I P P P P e T
> CERAERRE Tedds seeerede
= =
===r == E——r——c
= == et
L A= ST
e e e e e e e e e e e e e
R e o e B S B e eSS s
« e e
.
—{)
y) | =
e e B
= =t
& P —
Dl M ST
H
e —
EENRRipnsapsRns Sea R FESRFR RR AR AR S m R Rk
Eprpiipi RIS AR AR R S
e # ;’ ;[' L % % % o7
R e e e e e e
= ., B~

Fig. 6. Vertical Arrangement.

time, if a horizontal arrangement system can only change between
musical cues at the end of a phrase, there is a possibility that the music
may feel disconnected from the gameplay [4]. Because of this, systems
that exclusively address horizontal arrangement in the phrase granu-
larity are rare. For all of the music in Figs. 4-6, a recording can be heard
at https://bit.ly/2NKI7rk. These examples were composed by
the first author for the purposes of demonstrating these concepts.

4.4. Vertical arrangement

4.4.1. Instrument

Vertical arrangement systems that function in the instrument level
of granularity arrange single instrumental lines into and out of a fuller
orchestration. Fig. 6 demonstrates how instrumental vertical arrange-
ment may work. In the first system, all musical parts (Melody (M, blue),
Harmony (H, red), and Bass (B, green)) are playing. In the second and
third systems, individual instruments are removed and re-introduced to
the total arrangement, creating a new combination of musical elements.

4.4.2. Instrument group

Vertical arrangement systems that function in the instrument group
level of granularity are almost identical in function to those that
function on the instrument level of granularity. However, instead of
removing or adding individual instrumental lines from an orchestra-
tion, such systems instead remove or add instrumental families from the
mix. The system in Dark Void (17) functions on an instrument group
level of granularity — the generative system cannot add or remove a
single insturment, but instead adds or removes combinations of in-
struments together.

4.5. Performance

Performance systems automate the interpretation of music.
Performance systems are not differentiated by their directionality. This
is because performance systems alter properties that describe moments
of time, but alter the dimensions across time. That is to say, perfor-
mance systems alter vertical properties horizontally. Performance sys-
tems also often alter several properties at once. For simplicity and
clarity, we will describe the smallest granular unit that a system ma-
nipulates when discussing performance systems.

Note Performance systems may alter the pitch of notes during

Entertainment Computing 33 (2020) 100337

gameplay. Pitch alterations are generally limited to only one or two
semitones. The pinball game Black Knight 2000 [40] alters the pitch and
timing of musical sound effects based on the surrounding musical
context [4]. In Chuchel (32), most of the sound effects and voice sounds
are pitched or semi-pitched. The system alters the pitch of the PCs audio
to fit within the surrounding musical context. Performance systems may
also alter the timing and duration of notes, or may choose to omit or
add notes during gameplay. This is sometimes part of a larger gesture
such as a tempo change, or a smaller gesture such as a fermata. Per-
formance systems that add or omit notes often to so to develop or
simplify a phrase, or may add musical ornaments. MetaCompose (30)
can both alter the duration of notes, as well as adding or removing notes
from a generated melody.

Instrument parameter Performance systems may automate the para-
meters of a single or multiple instruments. Some examples of para-
meters that performance systems may alter are dynamics (velocity/
volume), ADSR envelope, and spectrum (using filters or changing the
waveform of the sound).

Instrument Effect Performance systems may automate the presence
and parameters of audio effects on instruments. Effects are common-
place in composed music, but are generally underused in generative
systems. Effects are often used together. We borrow and modify Michael
Sweet’s taxonomy of audio effects [4], which are separated into three
categories:

e Time-based effects generally add some form of echo to shape the
way that a sound evolves over time. These effects include reverb,
delay, chorus, flange, and phase effects.

e Frequency-based effects alter the spectrum of the frequency, with
effects such as filters, equalizers, or resonators. Vibrato is also an
example of a frequency-based effect, where a low-frequency oscil-
lator alters the frequency of a note subtly.

® Volume-based effect change the dynamics of music. These effects
include a Tremolo, which uses a low-frequency oscillator similar to
vibrato, but alters the dynamics instead of the frequency. Other
volume-based effects include limiter, compressor, gate, and ex-
pander.

Instrument Performance systems may automate which instrument is
playing a line. This is distinct from arrangement systems selecting in-
struments, as a performance system will select which instrument to use
when playing through a composed line, not whether the instrument will
play. Otocky (2) adaptively changes instruments during gameplay.

These dimensions and common structures describe the musical
construction and output of generative systems for games. The next set
of dimensions describe the interaction between the music system and
the gameplay itself.

5. Gameplay dimensions

Our first gameplay dimension is the adaptivity, or autonomy, that
the system has. This dimension describes how much the system adapts
to the gameplay. Adaptivity can be understood as the dimension that
describes how the system deals with input from the game.

We borrow Richard van Tol and Sander Huibert’s “IEZA” framework
for classifying game audio [41], which describes how the system’s
output interacts with the game. The IEZA framework is intended to
describe all aspects of game audio, and we adapt the framework to
focus on music. Fig. 7 shows our adapted framework, and examples of
where common audio elements exist within the framework. The two
dimensions of our framework are diegesis and ambience.

5.1. Diegesis

The dimension of diegesis describes whether the music is diegetic or
non-diegetic. Diegetic music is music that exists within the game world,

C. Plut and P. Pasquier
Ambient

Background music Environmental sounds

Ambience

Non-Diagetic Diagetic

Diegesis

UI sounds Footsteps, guns

Sourced

Fig. 7. Adapted IEZA model of game audio.

while non-diegetic music exists outside and along the game world.

5.1.1. Diegetic

Diegetic music originates from within the game world. This may
take the form of audio emanating from an in-game object such as the
radio stations on a “pip-boy” in Fallout 3 [42], it may take the form of
an in-game musical instrument such as in The Legend of Zelda: The
Ocarina of Time [43], and it may even take the form of in-game sound
effects having musical pitches, as in the case of Pole Riders [44].

5.1.2. Non-diegetic

Non-diegetic music does not originate from within the game world.
Most games music is non-diegetic, where a musical score simply plays
during gameplay. The in-game characters are not aware of non-diegetic
music, it is provided exclusively for the player’s benefit.

5.2. Ambience

The dimension of ambience describe whether the music is connected
to a source, or is ambient. Most music in games is ambient and not
connected to a source.

5.2.1. Sourced

Music that is sourced is linked to a specific source in the game,
though not necessarily a source in the game world. A simple example of
non-diagetic sourced music is a musical response when the player clicks
on a Ul button. As an example, in Chuchel (32), the only sounds that the
player’s character makes are abstract non-language vocal sounds, and
are pitched to fit in with the musical surroundings. This is an example
of a diegetic sourced music.

5.2.2. Ambient

Ambient music is not sourced, and instead emanates from the en-
vironment. Most music in games is non-diegetic and ambient. We do
not use “ambient” to refer to a musical style, but rather to the use of the
music. A non-musical example of a diegetic ambient sound is ambient
weather sounds. A musical example of the common non-diegetic am-
bient sound is in Halo 2 (11), in which the music is not connected to any
source, and does not emanate from within the game world.

5.3. Adaptivity/autonomy

The level of autonomy that a system has from a game describes how
the system reacts and responds to the events and state of a game. As we
have mentioned in Section 1.2, to qualify under our definition of gen-
erative, a system must have some degree of autonomy from the ga-
meplay. Because generative music systems for games exclusively output
audio of their compositions in real-time with the gameplay, this di-
mension addresses the adaptivity of the music in the game. The amount
of autonomy that a system has is inversely related to how adaptive the
system is. The autonomy dimension is also distinct from many other
dimensions, because it is a continuous dimension, while other

Entertainment Computing 33 (2020) 100337

dimensions are more categorical. There are two main divisions of au-
tonomy for game generative music systems:

5.3.1. Linear

Linear systems have a high degree of autonomy from the gameplay.
Such systems generate music with little input from the gameplay. This
use of music can involve generating a single piece of music for a level/
game state as the level loads, that is then used as a linear piece of music.
This can also involve creating a musical composition in real-time as the
gameplay unfolds, but only using variables that were set at the begin-
ning of the generation. Spore (13) presents an example of linear gen-
erative music. In Spore (13), a piece of music is generated at the same
time that the game environment loads. Once the music is generated, it is
used as though it is any other linear piece of music — looping through
the music from beginning to end.

5.3.2. Adaptive

Adaptive systems have a lower degree of autonomy from the ga-
meplay. Such systems generally generate their music in real-time,
continuously updating the features of their generation to match with
the constantly updating game state. This theoretically allows for a
generative system to be adaptive on a much deeper level than with
composed adaptive music, because the music can be altered more
completely than with composed adaptive music. Melodrive (31) de-
scribes this use of music as “Deep adaptive music”.

5.3.3. Reactive

Reactive systems have no autonomy from the gameplay. In Fract
0SC[27], the gameplay acts as an interactive synthesizer. The music in
Fract OSC reacts directly to the position and properties of in-game ob-
jects, that are directly controlled by the player. While reactive systems
are considered generative by some definitions [24], a purely reactive
system does not fall within our scope because the system has no au-
tonomy from the gameplay.

6. Architecture dimensions

The musical and gameplay dimensions describe the way that a
generative game system interacts with a game, and how its musical
output is structured. While these dimensions describe the practical di-
mensions of a system, there are also architectural dimensions that de-
scribe the inner workings and knowledge of a system.

Architecture dimensions describe how a system is internally struc-
tured. These dimensions describe the way that a system organizes and
understands its data, in contrast to the previous dimensions that de-
scribe the way the system manipulates its data.

6.1. Generadlity of the system

As mentioned, generative music does not yet have widespread use in
the games industry. Most industrial systems that use generative tech-
niques do so to extend and expand a game’s composed music to fit
within the game. This also means that industry systems generally are
designed specifically for the music and the game that they are in-
tegrated into. In contrast, academic systems are generally designed to
provide a generic platform that can be integrated into many different
games without fundamental changes. The generality dimension mea-
sures whether the generative system is designed as a generic platform,
or whether the system is designed specifically for a single game.

6.1.1. Generic

Generic systems attempt to create a framework that is game-ag-
nostic. Generic systems are independent systems, that may be in-
tegrated into multiple different games without requiring major systemic
overhaul. Generalist systems are most common in academic systems,
but there are systems used in the game industry as well. DirectMusic (4)

C. Plut and P. Pasquier

and Agate/AGMS (12) are both examples of generic music generation
systems.

6.1.2. Specific

Specific systems are designed explicitly for the game that they
provide music for. Such a system is intrinsically linked into the game
that it provides music for. These systems generally are designed based
around the surrounding musical context and gameplay events and
variables for the game that they provide music for. Game-specific sys-
tems are most common in industrial uses. Red Dead Redemption (16)
provides an example of a game-specific system. The musical system in
Red Dead Redemption (16) takes important game variables as input.
Some of the tracked variables and musical reactions are generic and
applicable to many games, such as playing faster and more active music
during combat sequences. However, many of the tracked variables and
reactions are specific to Red Dead Redemption (16), such as changing the
music when the player mounts a horse. While the core idea of an
adaptive system that reacts to game events could be used elsewhere,
removing the game context from this system would fundamentally
change the workings of the system, and as such it is not generic.

6.2. Generative algorithm used by the system

While the generality of a system describes how it fits into the larger
world of the game, the algorithm of a system describes how it creates
music. Almost any Al algorithm can and has been used for computa-
tional creativity purposes [21]. Listing all of the possible generative
musical algorithms far exceeds the scope of this survey. Instead, we
focus on the four most common algorithms for use in MuMe. Of these
four algorithms, only two are common in generative systems for games.

6.2.1. Rule-based

A rule-based algorithm uses a set of rules, either learned or pro-
grammed in, to generate its output. A simple example of a rule based
system in the symbolic music domain is one that uses species coun-
terpoint® to create harmony lines. Rez (8) uses a rule-based system
where the exact timings of musical stings depend on a set of rules de-
termined by the surrounding musical context. Some rule-based systems
are purely deterministic — given identical input they will produce
identical output. Some rule-based systems instead are non-determi-
nistic, often using elements of stochasticity.

6.2.2. Stochastic

A stochastic system uses a pseudorandom process to generate its
output. This randomness may be evenly distributed or be the result of a
statistical model providing weighted changes. A Variable-order Markov
model (VOMM) is an example of a statistical model that uses stochastic
methods to generate music. In a VOMM, the generated music is de-
termined by a probability that is based on the previous music. The
VOMM then selects which note to choose next by a random or weighted
random chance. The Audience of the Singular (29) uses a varaible-order
Markov chain with shifting probabilities to generate its music.

6.2.3. Genetic algorithm

A Genetic Algorithm (GA) is modeled after the natural selection
process as seen in nature. A GA begins with a set of randomly generated
states. Each state is then evaluated by a fitness function. The fittest
states are then combined using some process. This process can include
random mutations as well [46]. Interactive Genetic Algorithms, which
use a human subject to determine fitness, have been used in generative
music systems [47]. We have identified one system, MetaCompose (30),

2«“Species counterpoint” is a strict adherence to certain musical relationships
in melody and harmony. It is generally used as a pedagogical method to teach
melodic and harmonic writing [45]

10

Entertainment Computing 33 (2020) 100337

which partially uses a GA to address the composition task.

6.2.4. Artificial Neural Network

An Artificial Neural Network (ANN) is an algorithm that is modeled
after the human brain. ANNs are composed of neurons, connected by
links. These neurons may be in a single layer, or may have hidden layers
of perception and activation [46] ANNs are capable of forming complex
statistical distribution models, and are differentiated from other sto-
chastic methods because they form connections rather than rule-based
distributions [48]. While ANNs are gaining popularity in MuMe, we have
only identified one generative system for game music that uses ANN
algorithms.

6.2.5. Other approaches

There are many other algorithms that can be used for generating
music, and describing every possible generative algorithm for music is
far outside of the scope of this survey. The listed algorithms are the
most common algorithms in generative music systems, with almost all
generative music systems for games using rule-based or stochastic al-
gorithms. Further information on generative music algorithms can be
found in an online class on Kadengze [49].

6.3. Musical representation

As mentioned, almost any Al algorithm can be used for generative
music. While the algorithm that is used describes how the system ma-
nipulates its musical knowledge, the musical representation dimension
describes how a system stores its knowledge of music. Because a gen-
erative system for game music will at some point produce audio, there
are limits to the range of possibilities for the knowledge representation
of systems. Surveyed systems either store their knowledge symbolically,
and contain the ability to synthesize audio, or they contain audio clips,
which are streamed from the storage media.

6.3.1. Symbolic

Systems that represent their knowledge symbolically can use any
symbolic notation to represent the music. The most common notation in
symbolic music representation for computing systems is MIDI, in which
each musical event is represented by a series of variables such as pitch,
velocity, channel, on/off, etc. The Audience of the Singular (29) re-
presents music using MIDI values. AOTS (29) uses symbolic re-
presentation both in the corpus that supplies its knowledge, and in the
representation of its output, which is then synthesized in real-time.

6.3.2. Audio

Systems that represent their knowledge with audio combine pre-
existing samples of sound together into musical pieces. These systems
are more common in industry uses of generative arrangement of music,
where recording composed samples of music and arranging them
adaptively has a similar work-flow to using composed adaptive music.

6.4. Musical knowledge source

While the algorithm dimension describes how a system manipulates
its musical knowledge, and the musical representation dimension de-
scribes how a system stores its knowledge, the musical knowledge
source describes where the knowledge originates. This knowledge can
come from one of two sources:

6.4.1. External

Systems with external knowledge have their features, parameters,
and values input by either their user or creator. The “user” in this case
may describe the game’s player, but often describes the composer or
audio designer, if they are not the creator of the system as well. In
generative systems for games, external knowledge is exclusively pro-
vided by the system’s creator. One example of a system that uses

C. Plut and P. Pasquier

external knowledge is seen in Anarchy Online (9). In Anarchy Online (9),
each musical transition was hand-coded by the composers.

6.4.2. Learned

Generative systems may also take their knowledge from analyzing a
corpus of musical input, and building a statistical model based on the
input. Such systems may analyze either audio or symbolic data, though
in the examined systems, only symbolic corpora have been used. The
Audience of the Singular (29) builds a Variable-order multiple-viewpoint
[50] Markov chain by analyzing a corpus of MIDI files. The MIDI files
for The Audience of the Singular (29) were arrangements of music from
the Super Nintendo Entertainment system and the Nintendo En-
tertainment system. The Markov chain for The Audience of the Singular
(29) is learned a single time, before gameplay. During gameplay the
system uses the existing, pre-trained Markov chain.

This concludes our taxonomy of generative music systems for
games. In the next section, we will now examine the systems that fit
within the scope of generative systems for games along this taxonomy.

7. Examination of musical systems

Table 1 shows the examined extant systems for generative music
and audio in games. These games are listed in chronological order of
release. It is important to note that while we have done our best to
organize and collect data on these systems, in many cases the systems
are used in commercial products. Because of this, the information
concerning the systems is not always complete. Finally, for clarity we
will simply be referring to the games that use a generative music system
by the title of the game.

7.1. Composition systems

7.1.1. Horizontal composition

GhostWriter (1998) [51] The proposed academic education-oriented
game Ghost-Writer (5) uses a musical system that maps in-game tension
to musical tension using a rule-based system with random pitch selec-
tion. As far as we can determine, neither the musical system nor the
proposed VR game were developed beyond the proposal phase.

As with many other academic musical systems, Ghost-Writer (5)
attempts to map in-game activities to a dimensional model of affect
[52], and specifically targets the dimension of tension. Ghost-Writer (5)
does not attempt to use any automatic recognition of affect during
gameplay, and instead uses a human director, who observes the ga-
meplay and attempts to match the level of tension to the gameplay
events. Because Ghost-Writer (5) has a stated design goal of acting as a
classroom activity, Robertson assumes the presence of a teacher or fa-
cilitator who can mediate and navigate the experience and music.

Ghost-Writer (5) uses a three step process to generate it’s music. The
first step is the creation of a high-level form, though the authors do not
provide further information on this step. Once a form is created, the
system generates rhythmic data by selecting rhythmic “feet”, based on
the rhythmic feet of poetry. These feet are provided tension levels by
the creators of the system. Once rhythms are generated, the system uses
a version of Arnold Schoenberg’s Theory of Harmony to create first a
chord type (major, minor augmented, diminished). The system then
creates a melody by choosing random pitches that fall within a set of
constraints as decided by the harmony and rhythm. The system then
creates an accompaniment using random generation within a simpler,
more harmonic-focused set of constraints. Finally, the system assigns
instruments to all parts, based on the provided tension level. The rules
and constraints for each of these generative steps were hand-crafted by
the system authors.

Spore (2008) [53] The generative system in Spore (13) automates
both the composition task and performance task, using a modified
version of PureData, called “EA-PD”. Spore’s generative system was
created in consultation with Brian Eno, a well-known pioneer of

11

Entertainment Computing 33 (2020) 100337

generative music. Theoretically, the music system in Spore could be
used as a generic system, as it does not require game-specific messages
or information, but publisher Electronic Arts has not published the
system for external use. The system in Spore creates its music primarily
by generating multiple independent musical phrases randomly, with
randomness controlled via seed manipulation. This is a multi-agent
approach to music generation [54], where simple individual generative
agents combine to create complex combinations.

The music system for Spore is both reactive and linear, but not
adaptive. The generation parameters are directly controlled by game
state changes, but the music that is generated is the played back as
linear music. Spore represents the only linear generative system that we
are aware of. The mappings of the game state and generative para-
meters are externally provided by the composers and audio designers
for Spore.

Little information is available about how Spore’s system addresses
the performance task, though the creators describe the system’s cap-
ability to apply Digital Sound Processing (DSP) effects in real-time [55].

One of the reasons that generative music is uncommon in video
games is that generative systems are often CPU-intensive. While this
presented a possible problem in Spore due to the large amount of other
PCG that can have large CPU draw, the designers of the system solved
this issue by mainly using generative music during parts of Spore where
there is limited game logic, and therefore the CPU is more free to be
used on music generation [55].

Cullimore, Hamilton, and Gerhard (2014) [28] The next system that
we examine is an unnamed system from Cullimore, Hamilton, and Ger-
hard (23). While this system does address the composition task, it does
not generate complete musical pieces. Instead, this system targets a
weakness that is common in horizontal arrangement systems by com-
posing short, chord-based transitions between musical cues.

One challenge in creating horizontal arrangement systems is that
musical transitions can sound jarring if not properly handled [4]. Hand-
creating transitions for each musical possibility requires a large amount
of labor. Music may also be written for a horizontal arrangement such
that any transition will sound acceptable, as in the case of Red Dead
Redemption (16)’s musical system. Cullimore, Hamilton, and Gerhard’s
system attempts to computationally create chord progressions that can
transition between any two bichords. The system encodes chords in a 2-
dimensional space, with each state consisting of a pair of notes. The
space is organized such that horizontal movement changes transposi-
tion of notes, and vertical movement changes the intervalic distance
between the notes. The system is capable of creating chord progressions
that link two chords together, though it is limited. The system ex-
clusively generates bichords, and the authors do not mention whether
transitions can be altered in case the game state rapidly changes. Also,
this system seems to generate chord progressions without any sort of
rhythm — in order to use this system in a game setting, some additional
rhythm logic is required.

Engels et al. (2015) [37] Another unnamed generic system is pre-
sented by Engels et al. (24). The first and most basic model that Engels
et al.’s system uses is a Markov chain. This Markov chain encodes
musical events that occur at the same time together into a state. This
has the effect of adding flexibility to the number of simultaneous voices
that the system can play, as a state with a single note may lead to a state
with a fully voiced chord.

Engels et al.’s system separates musical sections into different
models. The Engels et al. system automatically segments music by using
a support vector machine (SVM)® to group similar musical sections,
based on pitch, duration, timbre, and volume. In addition to the Markov
chain and the segmentation, Engels et al.’s system uses a Hidden

3 A support vector machine is an algorithm that learns classifications from a
pre-classified input dataset. The SVM then can use this data to classify new,
unlabeled input data.

C. Plut and P. Pasquier

Markov Model, with chords as hidden states. These chords can be
provided externally, or if not provided the system will attempt to au-
tomatically tag the chords. The hidden chord layer of the Markov chain
is used to restrict individual voices so as to avoid clashes.

Prechtl (2016) [38] Anthony Prechtl created both a generative
system and a game, integrating the system into the game for evaluation
purposes. The game that Prechtl created is titled Escape Point, and is a
abstract horror game.

Prechtl’s system uses a Markov chain to compose a chord progres-
sion that loosely adapts to the level of tension during gameplay. As with
Ghostwriter (5), this design is based off of Schimmack and Grob’s 3-
dimensional model of affect [56]. During gameplay, the system adjusts
the probabilities for each chord based on the game state and tension
level in the game. The tension in the game is represented by how close
the player is to an enemy non-player character.

Prechtl’s system has 12 parameter sets that control the generation of
music. Seven parameters adjust the probabilities of each chord transi-
tion within the Markov chain. The other four parameters alter the
performance of the music, altering the volume, velocity, timbral in-
tensity, and the presence of a pulsing tone. The system uses two sets of
parameter presets — one for low tension and one for high tension. The
higher tension preset trends towards less major chords, more dimin-
ished chords, less tonal, and less diatonic than the lower tension pre-
sets. For the performance values, the higher tension presets are at a
higher volume, velocity, timbral intensity, and pulse volume.

Prechtl’s system is the only system from academia that we are aware
of that has been evaluated in a video game setting. Prechtl found that
for players with experience with games similar to Escape Point preferred
the generative music to linear composed music. Prechtl also found that
all players found the generative music more tense and exciting com-
pared to the linear composed music. Finally, skin conductance re-
sponses were consistent with these findings, though Prechtl describes
difficulties in analyzing the data. This provides both subjective and
objective support of the strengths of generative and adaptive music.

The Audience of the Singular (2017) [57] The Audience of the Singular,
or “AOTS”, is similar to Prechtl (28)’s system in that it is a generative
composition system that uses modified Markov chains to generate
music. It is also similar to Prechtl (28)’s work as the developer also built
a game around the system. AOTS has a symbolic representation of
music that is learned from a corpus of 30 pieces of video game music
from the late 1980s and early 1990s. The game for AOTS was built to
interact with the music system specifically, but the music system itself
is generic, and could function without the surrounding game.

AOTS uses a variable-order Markov for its core horizontal genera-
tion, which is learned from the corpus offline. The VOMM creates four
versions of five musical lines, one phrase at a time, starting with the
bass line. AOTS uses four different VOMM models, which are in-
dependently learned by analyzing selected musical phrases from the
corpus. For all lines, a rhythm line is first constructed. The VOMM or-
ganizes rhythms into beats, with 1-4 16th notes per beat. The prob-
abilities for beats are based only on the previous chosen beats. Each
beat also may end with a tie, allowing for syncopation.

The bass line is also the most simple version of the markov chain -
the bass line probabilities are based exclusively on the previous notes
and the length of the phrase. As the phrase approaches a length of 16
measures, the bass line begins to weigh more heavily towards func-
tional cadence relationships. The system then composes a primary
melody whose probabilities are based on the previous notes, a learned
melodic contour based on phrase length, and the notes of the bass line.
A secondary melody is then constructed similarly to the primary
melody, though the probability spread is heavily changed by the dis-
tance to the melody. Finally, the system composes two harmony lines
whose probabilities are based on the previous notes, bass line, and
melody lines. The secondary harmony line also considers the primary
harmony line. Once the generation is complete, AOTS selects a drum
part from several composed grooves. To create the variation lines,

12

Entertainment Computing 33 (2020) 100337

AOTS removes notes and extends durations of notes that occur on
weaker beats, with the final variation containing long notes that begin
on primarily strong beats. All of the probabilities for the VOMM are
learned from the corpus.

7.2. Arrangement systems

7.2.1. Horizontal arrangement

Ballblazer (1984) [58] The earliest use of generative music in video
games is 1984’s Ballblazer (1). Ballblazer uses a generative technique
that the creator calls “Riffology” [59], which is a catch-all term that can
be applied to any system that uses constrained random selection of
notes to generate music. Ballblazer (1)’s generative system is unique in
that it addresses all three generative tasks on grid. The system arranges
accompanimental music horizontally at a phrase granularity, and it
composes and performs musical melodies at a note level of granularity.

The system is Ballblazer provides music between games and in
menus, but does not provide music during gameplay. The system has a
corpus of 16 measure melodic fragments (called “riffs” by designer
Peter Langston), and 4 measure accompaniment sections containing a
bass line, drum line, and chords. These corpora of melodic fragments
and accompaniment sections are provided by the system’s designer, and
contain notes exclusively drawn from an aeolian scale based on a (a
natural minor), with an added 5.

Details on the generation of the 4 bar accompaniment sections is
limited, though Langston describes the logic as a “simpler form” of the
melodic system. The melody composition generates several possible
“riffs”, or collections of randomly-selected notes within the provided
scale. The system then chooses the riff that begins on a note that it
closest to the note that ended the previous riff. Once the riff is selected,
the system performs the riff by choosing to omit notes depending on
variables, as well as determining the speed and volume of the perfor-
mance.

iMuse (1991) [60] Surprisingly, the generative system with the
largest effect on the state of the art for generative arrangement systems
in games was created in 1991. iMuse and systems that extend its design
by and large represent the state of the art in the games industry [33].
Because iMuse is a generic system that has been integrated into several
games, it cannot be evaluated as a system along gameplay dimensions,
though it is most commonly used to provide linear, ambient, non-die-
getic music.

At its most basic functionality, iMuse plays a piece of music that is
stored symbolically. If there are no game changes, iMuse will play the
music as written, linearly. When there is a game state change, iMuse
attempts to seamlessly transition the music to fit the new game state.
This can be done by ending the music, or by transitioning between two
musical pieces. Peter Silk created a short video that demonstrates iMuse
transitioning between two musical pieces seamlessly, available at
https://bit.ly/1R39FPY [61].

iMuse is, importantly, an arrangement system. This means that it
does not compose new music, but instead resequences and alters
composed music. For iMuse to create seamless transitions, musical
content must be composed to enable the seamless transitions. This
means that the music composed for iMuse must be in complimentary
keys, at similar or complimentary tempi, and cannot use extended
harmonies such as modal borrowing®. Also, the musical library, or the
music used in iMuse must be annotated by hand to provide the system
with information on where the music may transition.

Munge/MNG (1998) [24] MNG (6), pronounced and sometimes
written as “Munge” is a filetype that stores generative music instruc-
tions for the games Creatures 2, Creatures 3, and Docking Station. These

#Modal borrowing is a compositional technique where notes or chords from a
parallel mode are used. A common example is the use of a borrowed flat VI
chord from the parallel minor of a major key

C. Plut and P. Pasquier

files contain a variety of rules and game states that correspond with an
external corpus of audio music. The system in these games (which we
will refer to as Munge for simplicity) interprets this data to address the
arrangement task in a horizontal directionality. We are unable to de-
termine the granularity of the system, though it is capable of both on
grid and off grid generation. Munge (6) generates music that is non-
diegetic, ambient, and adaptive. The system is generic, and uses a rule-
based algorithm with external knowledge source and an audio re-
presentation of music.

The MNG filetype allows a programmer to set individual voices with
musical variables, based on in-game variables, as well as randomness.
Each MNG file is associated with a specific level of a game. As the game
state changes, Munge receives as input a “mood” variable. The system
then arranges the music based on a combination of the mood variable
and randomness, according to the ranges and variables set up in the
associated MNG file for the current level.

No One Lives Forever (2000) [62] No One Lives Forever (NOLF) (7)
uses a system that refines the iMuse design. While iMuse (3) functions at
a measure level of granularity, NOLF can transition between musical
cues on any beat.

The primary refinement from iMuse to NOLF, beyond the granularity
change, is that the system in NOLF can also alter the pitch and tempo of
its musical library. This reduces the restrictions on the music, as the
system can alter the tempi and keys of musical transitions to avoid
jarring transitions. One weakness of this approach is that the musical
library requires additional annotations to work within the system.
While the system is capable of matching tempi and keys, it cannot
automatically detect either. Essentially, the system in NOLF provides
better flexibility and more adaptivity in the music, but at the cost of
increased data entry labour.

Diner Dash (2004) [63] Diner Dash (10) uses a simple system to
generate music with large amounts of variety from a small amount of
composed music.. In Diner Dash, each musical cue is separated into
phrases, any of which can lead to another phrase within the same cue.
During gameplay, the system plays the phrases in a random order,
based on the cue, which in turn is based directly on the game state.

Uncharted 2: Among Thieves (2009) [64] Uncharted 2: Among Thieves
(15) uses a very simple generative arrangement system, that targets one
specific problem in game music. In most games, when the player fails a
gameplay segment or challenge, they return to a previous point in the
game and attempt the challenge again. In games with linear composed
music, this often re-starts the musical piece that is associated with the
current game state. The music in Uncharted 2 has multiple possible
starting points, provided by the composer. When the player fails a ga-
meplay segment, they are returned to the checkpoint, and the musical
system selects a random starting point in the music. This avoids the
player hearing the exact same music in the exact same way multiple
times.

Nin-player (2011) [65] The Nin-(Non-LiNear)-player, which is de-
monstrated in the game Shortburst, uses a simplified version of a
Markov chain to address the arrangement task. Most uses of Markov
chains for generative music store individual notes or chords as single
states to address the composition task. However, the nin-player uses a
“cell-based” design inspired by a Markov chain where each state is a
composed musical phrase, and transition matrices are unweighted. Es-
sentially, the nin-player uses a Markovian design to ensure that transi-
tions between states will not have any jarring or unexpected transitions.
Within any game state, this design essentially means that the music is
pseudorandomly shuffled, similar to other horizontal resequencing
techniques [18,4].

The nln-player’s design necessarily involves restrictions on the
music that is composed for it. Phrases that can transition to each other
must be consistent in key, tempi, and mode, as in iMuse. Additionally,
the composer must hand-annotate a configuration file within a specific
metadata format. Also, the system can only interpret specifically for-
matted file-names.

13

Entertainment Computing 33 (2020) 100337

DOOM (2016) [66] As with many horizontal arrangement systems,
the system in DOOM (2016) (27) presents another refinement on the
architecture of iMuse, and arranges composed musical phrases together
based on both the game state and the surrounding musical context.

DOOM’s generative system is similar to the designs presented in the
nin-player (18), The Audience of the Singular (29), and Engels et al. (24),
in that DOOM draws from multiple corpora separated as musical
phrases. Doom’s corpora divisions are based a standard song structure of
intro-verse-chorus-bridge-outro. Each phrase type has approximately
30 potential composed phrases. During gameplay, the system de-
termines which phrase type to play based on the surrounding gameplay.
The system then choses a musical phrase at random from the corpus.

There are two notable aspects of the music system in DOOM.
DOOM’s gameplay and music are built to be complimentary, with the
flow of the game matching a standard song form, according to com-
poser Mick Gordon [67]. This facilitates the design of the system, as the
possibility space for the music is also contained.

The second notable aspect of DOOM’s system is that, similar to other
horizontal arrangement systems, the music is heavily constrained for
the composer. As seen elsewhere, because DOOM allows for any phrase
to transition into any other phrase, and cannot alter the pitch content or
rhythmic content of its corpus, all pieces must be written in com-
plementary keys and tempi. DOOM’s system does not require files to be
annotated as fully as other examined systems such as the nin-player.

Horizontal arrangement systems allow for music to more seamlessly
transition between otherwise different musical states, as exemplified by
iMuse (3) and NOLF (7). These systems also allow for greater variety in
the musical content, as seen in DOOM (27) and the nin-player (18). We
will now focus on systems that use vertical arrangement, which is
sometimes referred to as “adaptive stem mixing” or “vertical layering”.

7.2.2. Vertical arrangement

We have identified two systems that exclusively target vertical ar-
rangement. Both of these systems provide increased musical variety,
and both do so with less compositional restrictions than horizontal
arrangement systems require. Because these systems share many ele-
ments of function, we examine them together.

Halo series (2004-2018) [68], Dark Void (2010) [69] The Halo (11)
series share a music system. While the system has evolved as the games
evolve, the core design remain consistent. Dark Void (17) uses a similar
system. Both of these systems add or remove groups of instruments in
real-time, which lets the player hear a single piece of music with many
different arrangements, reducing the fatigue from repetition.

The key difference between the systems of Halo (11) and Dark Void
(17) is their granularity. While Halo’s system can create much more
variety due to the number of controllable instruments, Dark Void’s
system provides more control to the composer, as the composer can
decide which instrument groups will sound better together.

An advantage to using vertical arrangement is that the music can be
written without any horizontal restrictions. The only restriction that
vertical arrangement systems place on the musical corpus is that during
any piece of music, any collection of parts must be able to play together.
This is a minimal restriction, as most instrument parts are composed
together in music by default. Also, unlike horizontal arrangement sys-
tems, there is only limited annotation required for the musical corpus,
as different instrumental parts of a single composed musical piece can
generally be assumed to play in the same tempo, with complementary
notes playing at any given time.

7.2.3. Mixed arrangement

DirectMusic (1996) [70] DirectMusic (4) presents a major improve-
ment on the iMuse (3) design. As with iMuse (3), because DirectMusic is a
generic system, it cannot be evaluated along gameplay dimensions, but
it is most often used to provide ambient, non-diegetic music. Unlike
iMuse (3), DirectMusic is capable of adaptive music, and can gen-
eratively arrange in the vertical dimension.

C. Plut and P. Pasquier

DirectMusic can simultaneously play multiple musical sources, and
reads from MIDI, WAV, and a proprietary format that contains both
symbolic data and a wavetable for synthesis, similar to MOD files.
DirectMusic can individually add or remove parts from any filetype,
allowing for vertical arrangement. In a departure from the iMuse design,
DirectMusic can also alter MIDI events, allowing it to alter pitch and
tempo, and can apply DSP effects such as reverb. DirectMusic can also
spacialize audio, providing 3d sound. These capabilities provide adap-
tive audio e.g. a single symbolic musical cue may change between a
major and minor mode based on the game state.

Anarchy Online (2001) [71] Anarchy Online (AO) (9) uses a system
called the “Sample-based Interactive Music tool”, or “SIM tool” [72].
The SIM Tool implements a Marovian algorithm similar to the nin player
(18), where each state represents a short musical phrase.

Anarchy Online is a Massively Multi-player online game, a type of
game where thousands of simultaneous users interact with a persistent
world. These games generally have high amount of game content, with
players regularly spending over 100 h in the game world. This high
gameplay length exacerbates a problem of linear composed music — the
player may hear single musical cues multiple times, resulting in
boredom [4,72]. As far as we are aware, Anarchy Online is the only
game of this genre to use generative music to address this concern.

Music composed for the SIM tool is split into short clips, and each
clip is individually sampled to create consistent reverb trails. The clip
must be annotated with tempo, meter, “layer” (an associated game
state), and a transition matrix to other clips. Clips contain three to five
transitions without switching layers, and “a fair number” [72] of
transitions to other layers. Layers represent both horizontal and vertical
responses to game states. Audio Designer Bjgrn Lagim provides an ex-
ample of both - as the player moves between environments, the system
will transition between layers, arranging music horizontally to differ-
entiate the environments. When the player engages in combat, the SIM
tool adds or removes layers from the 14 available combat layers, based
on the relative health points of the player and their opponent, as well as
the size of the opponent, arranging music vertically to adapt to the
gameplay.

Lagim describes several drawbacks to the SIM tool. He notes that the
clips used in AO are a few seconds long, and that they are only able to
transition at certain points. This can cause musical transitions to occur
well after the associated gameplay state change. The SIM tool can cross-
fade between clips during playback based on chord progression, though
this was not implemented in the game. Another drawback to this tool is
that the composer must provide the annotations for each clip by hand. If
a clip is added, other clips that may transition to the new clip must be
updated to include the new clip. If a clip is removed, clips that do
transition to the removed clip must also be updated by hand.

Tom Clancy’s EndWar (2008) [73] Tom Clancy’s EndWar (14) uses a
common mixed arrangement system design, one that is similar to the
more recent systems used in Red Dead Redemption (16) and No Man’s
Sky (26). The music in Endwar is divided into individual short musical
phrases, described internally as “cells”. Each cell is placed into a corpus,
described internally as a “pool”. Within each corpus, any phrase may
transition to any other phrase upon completion. The system may also
adjust the density of the music by adding a constrained random pause
between each phrase. This pause can be individually set for each corpus
during runtime.

The system generatively arranges music horizontally by adding or
removing individual corpora from the total mix, based on game state
and the musical context. When a layer is removed, the system allows
the current musical phrase finish playing within that layer, rather than
cutting off the music. The corpora that are playing at any point are
determined by the game state, which allows the system to adaptively
alter the arrangement of the music.

Designer Ben Houge describes several drawbacks and constraints of
this system. Houge notes that the technology for reading music off of a
DVD directly was too slow in 2008 to have multiple corpora of short

14

Entertainment Computing 33 (2020) 100337

phrases seamlessly transition and play. This required the system to load
the music into RAM, which is normally allocated to game levels and
textures. Also, Houge describes the workflow of the system, which in-
volved numerous iterations and mockups to create music for the
system, as well as what Houge calls “significant time” tweaking para-
meters in game context [74].

Red Dead Redemption (2010) [75] The system in Red Dead Re-
demption (RDR) (16) presents the most extreme form of systemic
flexibility at the expense of restricted expressive range. While RDR uses
a rule-based algorithm, its architecture can also be understood as a
Markov chain in which any state can lead to any other state. Music in
RDR is divided vertically by instruments, and each instrument has an
associated function e.g. “Melody” or “Bass”. Within any game state, the
system creates music by randomly selecting one musical phrase from
each function’s associated corpus. When the game state changes, the
system crossfades to a new randomly selected group of phrases from the
associated corpora.

This design presents an extremely flexible system, as there are no
restrictions on how the corpora can be combined. However, this design
presents severe restrictions on the composed library. All of the music in
RDR is composed in the key of a minor, at a tempo of 130 beats per
minute (bpm). The music does not contain extended harmonies or
modal borrowing. In short, because the system can combine any col-
lection of musical phrases together, all music composed for the system
must combine well with all other music composed for the system. This
severely limits the expressive range of the system.

No Man’s Sky (2016) [76] No Man’s Sky (26) uses multiple similar
generative systems to create multifaceted generative audio. The systems
in No Man’s Sky address the tasks of world audio playback similar to
Sonancia (25), the generation of alien-sounding speech, and the gen-
erative arrangement of music, though we narrow our focus to the music
generation system.

The corpus for No Man’s Sky is a composed score. The band
“65daysofstatic” composed a linear score for the game absent the
generative system. The composed music is divided into small clips of
music for the generative system, and each musical piece acts as a single
corpus. Because the elements of each corpus are sourced from com-
posed music, the composed clips can be assumed to fit together musi-
cally. This does require the music to be composed without key or tempo
changes within each piece, but it also reduces the need for hand an-
notations of music.

No Man’s Sky’s generative system differentiates music horizontally
based on five associated game states: “Wanted”, “Space”, “Planet”,
“Map”, and “AmbientMode”. Each game state has associated musical
pieces, which are pseudorandomly assigned to play together. Details of
the rules and restrictions that govern the combinations of musical ele-
ments is unavailable. The system arranges music vertically based on a
random procedural playback of each location in-game. The in-
strumentation depends both on the location of the player and where the
player is looking [5].

Adaptive Music System/AMS (2019) [77] The Adaptive Music System
(AMS) (34) has similar design elements to other academic generative
systems, such as MetaCompose (30) and The Audience of the Singular
(29). AMS alters pre-composed music based off of an affective mapping,
that is taken from the game state. It does this using a combination of
rule-based algorithms, genetic algorithms, and a Recurrent Neural
Network (RNN). An RNN is a class of Neural Network that maintains
past information while receiving new information.

AMS extends a categorical model of affect from music perception
literature, with 6 affect categories: happiness, fear, anger, tenderness,
sadness, and excitement. To connect the game state to the affective
data, a model of “spreading activation” is used. This model represents
affect and game concepts as weighted verticies in a 2-dimensional
plane. When a vertex activates, it also activates nearby vertices. In AMS,
because game concepts and affects are both on the same plane, when a
game event activates, it will also activate the nearby affective vertices,

C. Plut and P. Pasquier

which influence the music generation.

To generate music, AMS uses a multi-agent approach with three
agent roles. The first agent role is the “harmony” role, which builds a
chord progression using an RNN algorithm trained on a symbolic
corpus. This agent does not generate notes, but as in The Audience of the
Singular (29), the harmony information is used to constrain the output
of multiple melody agents. The melody agents use a rule-based ap-
proach to alter pre-composed musical pieces. The rules are created
offline using a supervised genetic algorithm, in this case trained by a
single expert composer. Finally, AMS creates a percussive line with a
single agent that uses a similar RNN approach to the harmony agent.

One element that sets AMS apart from other academic systems is
that while it is generic, it has been evaluated using real-world games. As
part of an evaluative study, AMS was integrated into an open-source
Zelda clone titled Zelda: Mystery of Solarus as well as the Real-time
strategy game StarCraft II. A correlational analysis of the games with
AMS and with their original score found that AMS significantly, if
slightly, increases player immersion.

7.3. Performance systems

While composition and arrangement systems automate the creation
of new music, performance systems automate the interpretation and
playback of music. Otocky (1987) [78] Otocky (2) is one of the first
examples of a game using generative music system. The gameplay of
Otocky is a horizontal “shoot-em-up” or “shmup”, similar to the Gradius
games. As the player progresses, they collect various upgrades, each of
which shares a name with an associated synthetic instrument. When the
player fires their weapons, the associated instrument plays alongside
the composed linear soundtrack, with pitch determined by the sound-
track and rhythm quantized to the nearest eighth note.

Rez (2001) [79] and Child of Eden (2011) [80] Rez (8) and it’s
prequel Child of Eden (19), have nearly identical gameplay, and use
identical musical systems. While these systems are almost identical in
design, they are not generic systems, but are nearly identical game-
specific systems.

The systems in Rez and Child of Eden are very similar to the system
used in Otocky (2). Rez and Child of Eden are third-person, 3d shmups
that are on-rails (the player does not control the motion of their avatar).
The player controls the location of a reticle on screen, and when they
move the reticle over an enemy, they lock on to the enemy. When the
player presses a button, their avatar fires its missile-like weapons,
which automatically track and hit the locked-on enemies. When the
missiles hit the enemies, a pitched cluster of notes is played. The exact
timing of the notes is quantized to be on grid, and the timbre is based
the player’s performance.

Bit. Trip Runner (2011) [81] Bit. Trip Runner (20) uses a system that is
nearly identical to the system in Rez (8) and Child of Eden (19), though
it is simplified. A difference in Bit. Trip Runner’s system is that, similar to
Otocky (2), the system provides adaptive music.

Bit.Trip Runner (20) is an infinite runner game, where the player
character moves at a constant speed, and the player must take action to
avoid oncoming obstacles and to pick up power-ups. When the player
jumps or slides, a note is randomly selected from a pentatonic scale that
matches the surrounding musical context. This note plays at the next
available beat. The instrument that plays the note is directly related to
the number of power-ups that the player has collected.

Chuchel (2018) [82] Chuchel (32) is unique among the surveyed
systems because the diegetic, sourced music that system performs also
functions as sound effects and even as character voices. When the
player interacts with objects in Chuchel, the object almost always pro-
duces a sound. There may also be an auditory reaction from the player
character. In many cases, these sounds are pitched, and the pitch of the
sound is determined by the surrounding musical context. In Chuchel,
unlike Rez (8), Child of Eden (19), or Otocky (2), this system has a low
degree of player control over the music. While actions in the previously

15

Entertainment Computing 33 (2020) 100337

mentioned performance systems always respond musically, in Chuchel
the musical nature of sounds is unpredictable and inconsistent.

Ape Out (2019) [83] The music system in Ape Out (33) is unique in
our surveyed systems as the game soundtrack and the musical output of
the system contain no pitched music at all. Instead, the music for Ape
Out is provided exclusively by a virtual drummer. The player can in-
teract with the game world in only two ways — grabbing a non-player
character/object, and throwing the NPC/Object. When the player
throws an NPC into a surface, the NPC explodes in gratuitous violence.
During gameplay, there is a constant drum groove that plays. When an
NPC is killed, there is also a cymbal accent.

The drum groove is selected based on the current gameplay level,
the amount of on-screen action, and random chance. The generative
system contains a library of 1000 short drum grooves and cymbal hits.
Each level of the game has an associated library of drum groves. The
drum grooves are also delineated by what the developers describe as
“level of action”. As the action in Ape Out becomes more intense, more
active drum grooves play. The cymbal accents are chosen randomly
from a library of cymbal hits.

7.4. Fringe systems

While the previously examined systems have well-defined gen-
erative tasks, we have also identified seven systems that do not fit as
cleanly into our taxonomy. These systems can be described using our
taxonomy, though either they fill multiple roles, or they approach
music in a unique way that is not fully captured by the taxonomy. We
describe these systems as fringe systems as they exist on the fringes of
our taxonomy.

Agate/AGMS (2008) [84] Agate (12), also called AGMS, is a system
that simultaneously addresses the composition and arrangement tasks,
with both a horizontal note granularity and a vertical instrument
granularity. The system has not been integrated into a game and
therefore cannot be described with gameplay dimensions, though it
does play linear music. Agate is designed as a generic system that uses a
rule-based algorithm. Agate’s musical representation is both symbolic
and audio, though the knowledge source is exclusively external.

Agate organizes its music in libraries and rule sets that are asso-
ciated with “moods”. Agate’s moods are provided by an external source,
and are attached to a game state, rather than being based in a more
general representation of affect. Agate combines two simultaneous rule-
based algorithms to address both the arrangement and composition
task. Agate generatively addresses the composition task with a set of
rule-based constraints on otherwise random generation. The designer
can select a collection of notes that may be used, the level of ran-
domness, the beats that notes may play on, the possible durations of
notes, and the available instruments. Agate then creates ambient
soundscape music by randomly selecting pitches.

For the arrangement task, Agate also uses constrained random
generation. The composer or designer provide either symbolic or audio
representations of short musical phrases. The designer also sets para-
meters that constrain the activity level of the samples. Agate plays these
phrases at random times over the ambient soundscape that is generated,
constrained by the activity level.

Sonancia (2015) [85] As with No Man’s Sky (26), Sonancia (25) uses
multiple different generative algorithms to generate a level, populate
the level, and add audio triggers to locations in the level. We focus our
examination primarily on the music generation aspects of Sonancia
(25).

Sonancia is a game that generates a horror-game level to match a
provided or machine-generated tension curve. Once the level is gen-
erated, the musical system distributes musical cues throughout the
game environment to match the generated level’s tension curve. Each
musical cue is annotated along Schimmack and Grob’s 3-dimensional
model of affect [86]. The musical cues are distributed into each room in
the generated level via the previously mentioned rule-based algorithm.

C. Plut and P. Pasquier

The selection method for the music can be chosen by the designer from
one of four provided methods: “Hall of Fame”, which selects the top n
pieces that match along a single emotional dimension, “Equidistant”,
which selects n pieces based on their ranking within the chosen emo-
tional dimension, “Granular”, which selects the closest emotional
match to the generated room, and “Random”, which selects randomly.

A core difference of Sonancia’s generative system, compared with
other systems that require musical annotation, is that annotation for
Sonancia does not need to be provided by an external source. Sonancia’s
initial corpus of music is annotated via crowdsourced ranking. Support
Vector Machines are then trained on the user provided annotations and
a selection of audio features. The SVMs are then used to annotate new
musical files based on the same selection of audio features. This use of
SVMs in the prediction task allows for the automatic annotation of
music files, reducing the labour of the standard arrangement-oriented
pipeline.

MetaCompose (2017) [39] MetaCompose (30) uses two different
systems to address both the composition and performance tasks. The
component sub-systems of MetaCompose differ not only in the task that
they address, but also the generative algorithm that they use.

The first system uses a combination of a stochastic algorithm, a
genetic algorithm, and a rule-based algorithm. The first system begins
its generation by generating a chord progression using a random walk
on a directed graph of possible chord transitions. This creates chord
progressions which over time resolve to the I chord. Once a progression
is created, a genetic algorithm evolves a melodic line. This genetic al-
gorithm uses a fitness function that is provided externally. The fitness
function’s design mirrors species counterpoint, with restrictions on
large leaps, and tendencies towards chord notes during leaps and after
chord changes. Finally, this composition system creates a framework for
accompaniment. The accompaniment system uses two rule-based
components to create a rhythm and arpeggio for accompaniment. This
system uses Euclidian rhythm to create even and repeating divisions of
time, and selects from pre-composed arpeggios to play the chords
through time.

The second system in MetaCompose targets the performance task at
the instrument and note levels of granularity, using a rule-based system.
This final performance system takes the previously generated music,
and alters and synthesizes the music according to provided Valence and
Arousal values. The system directly links arousal to volume, and va-
lence to brightness of timbre. Additionally, this system chooses an ac-
companying drum line to accompany the music. This drum line is more
prominent and faster as arousal increases, and more regular and steady
as valence increases. Finally, this system alters notes of the provided
composed music, adding dissonant tones from alternative musical
modes as valence decreases.

Melodrive (2018) [23] Melodrive (31) has limited information
available, as it is an in-development system from the games industry.
Because Melodrive is a generic system, it cannot be discussed along
gameplay dimensions, though it is intended to provide adaptive music.
Melodrive uses a symbolic representation of music with an external
knowledge source, though we cannot determine the algorithm for Me-
lodrive. Melodrive is differentiated from the other surveyed generic
music systems by being integrated into the Unity game engine. This
means that Melodrive can be integrated into any game built using the
Unity engine without requiring large amounts of labour to port the
system to a new engine or project.

Melodrive (39) is available as a Unity plugin, and presents a simple
interface for designers. To generate original music, the Melodrive script
must be given a style and emotion. Both of these options are catego-
rical, with the set of possibilities determined by Melodrive. Melodrive can
also interpolate between different emotions, and Russell’s 2-dimen-
sional model of emotion [87] may also be used. Melodrive creates fully-
featured music without requiring large amounts of additional labour or
musical restrictions. However, Melodrive also does not offer the custo-
mization possibilities in more open-ended generic systems such as

16

Entertainment Computing 33 (2020) 100337
DirectMusic (4).
8. Tools for adaptive and generative music

The two most popular publicly available video game engines in the
game industry are the Unreal engine and the Unity engine. Another less
popular publicly available game engine is Amazon’s Lumberyard, based
on Crytek’s Cryengine. Large game companies often use an internally-
developed game engine to create their games, such as Electronic Arts’
Frostbite, Ubisoft’s AnvilNext, Square-Enix’s Luminous engine, Bethesda’s
Creation engine, and Rockstar Game’s Rockstar Advanced Game Engine.
The engines that are in use by large companies generally do not publish
their specifications. In both Unity and Unreal, each audio asset is at-
tached to at least one object in the game. To trigger an audio asset, the
object must call the audio asset from code. This design does not easily
allow for generative music, as the number of managed audio assets
would easily become unfeasible. Lumberyard, as far as we are aware,
does not have any audio rendering capabilities built in. As far as we are
aware, most internal industry game engines have similar audio cap-
abilities to Unreal and Unity. External audio solutions and tools can be
used to facilitate generative music in games.

8.1. Audio middleware

Audio Middleware engines provide a solid base for interactive and
adaptive audio. Middleware can be used to fill any of the musical and
gameplay dimensions of our taxonomy. However, middleware engines
are limited in architecture dimensions - currently they are only capable
of creating systems specific to a game, that use a rule-based algorithm
with an external knowledge source, and audio representation of music.

Audio middleware engines seamlessly integrate into game engines,
and facilitate adaptive music and audio. The two most popular mid-
dleware engines are Firelight Technologies’ FMOD Studio [88], and
Audiokinetic’s Wave Works Interactive Sound Engine (Wwise) [89]. Both
middleware engines share similar functionality.

FMOD and Wwise act like traditional DAWs for audio editing, but
with additional controllable parameters. These additional parameters
can be any numeric or boolean game data, which is passed via an API
call. These parameters can be used to add, remove, or alter audio ef-
fects, including volume, DSP effects, and spacialization. Middleware
can also loop sections of music until game parameters are changed.

FMOD and Wwise can both also use indeterminacy for selecting
clips. A standard implementation of this feature in non-musical audio is
to provide variety in commonly-heard sounds. A single footstep that is
repeated every time the PC takes a step will get grating. By creating a
corpus of possible footstep sounds and randomly selecting one each
time the PC takes a step, the resulting sounds are less repetitive and
more believable. A musical example of this can be seen in Tom Clancy’s
Endwar (14), where the system shuffles musical phrases based on ran-
domness, taken from a corpus of possibilities.

These capabilities, when used together, facilitate generative systems
that address the arrangement task. Generative arrangement systems
that use middleware generally require the same musical restrictions as
seen in many of the surveyed systems: Any layers that intend to play
together must be composed at identical tempi and keys as each other.
Additionally, any clips that may randomly play alongside each other
must fit together musically.

8.2. iMuse

iMuse (3) has been discussed previously due to the consistent use of
the system in games. We now describe iMuse as a tool that can facilitate
generative music. iMuse is most easily used for horizontal arrangement
on-grid, and can fill any gameplay dimensions. iMuse can only create
music from external sources, with symbolic representation of audio,
using a rule-based algorithm. While iMuse could theoretically be used

C. Plut and P. Pasquier

for vertical arrangement, but this would require considerable work and
the software is not designed for vertical arrangement. iMuse could also
theoretically create adaptive music, but it’s design is most suited to
linear music.

8.3. DirectMusic

As with iMuse (3), DirectMusic (4) also functions as both a system in
games and a tool to facilitate generative music. DirectMusic extends the
iMuse possibilities, and can be used to address the arrangement task in
both horizontal and vertical directionalities. DirectMusic is most com-
monly used on grid, but this is not a necessary part of its design.
Systems that use DirectMusic can fill any gameplay dimensions, though
must use a rule-based algorithm with an external knowledge source.
DirectMusic can use both symbolic and audio representation of music.

8.4. PureData

Miller Puckette’s PureData (PD) can be used as a generative music
tool in games, in a limited capacity. PD is a visual programming lan-
guage that targets real-time audio generation. PD can be used in a
system that fills any musical, gameplay, and architecture dimensions of
the taxonomy. Electronic Arts used a modified version of PD called
“EAPD” for the generative soundtrack in Spore [53]. PD was also used to
synthesize the music of The Audience of the Singular (29). Unfortunately,
despite the potential strengths of PD, there is no official support for PD
implementation in any game engine that we are aware of, and external
libraries are often outdated and unstable.

8.5. Other languages

Real-time coded generation of music, such as csound and Max 8, can
also be used to synthesize and perform generated music. Chunity [90]
and uRTcmix [91] are examples of real-time audio/music languages
that can be used as plugins for Unity. These plugins allow for easy use of
audio generation functions for audio playback and synthesis of primi-
tive waves. We have found no instances of these languages being used
for generative music in games, though as with the other synthesizers,
these languages could be used to synthesize music from any symbolic
representation, or to sequence any audio representation of music.

8.6. Custom synthesizers

Both the Unreal engine [92] and Unity [93] allow programmers to
access the audio data directly. This allows a designer to program-
matically build synthesizers directly into the engine. These synthesizers
may then interpret symbolic music data into musical sounds. Because
these synthesizers act only as a playback device, a system that uses
custom synthesizers may fill any dimension of the taxonomy. Perhaps
because of the complexity of programming synthesizers from scratch,
we find no examples of this being used in either the academic research
or industry use. The Unreal engine contains very basic waveform syn-
thesizer blueprints as samples, though we are not aware of any in-
dustrial or research game that uses these synthesizers.

8.7. Open Sound Control

Open Sound Control (OSC) is a protocol for computer communica-
tion. OSC can also be used locally, sending data from different programs
on the same machine. Because of this, OSC can allow for programs such
as Ableton Live or Max/MSP to provide audio for games. As before,
because OSC is primarily a tool for communication, rather than con-
taining any algorithm itself, a system that uses OSC may fill any role in
our taxonomy. Audioverdrive (22) uses OSC to allow for interaction
between level generation and music. We are not aware of any examples
of commercial use of OSC. Most likely, this is because OSC cannot be

17

Entertainment Computing 33 (2020) 100337

integrated seamlessly as middleware engines can. During gameplay, a
system using OSC must still be running an external program as well.
Games generally run from a single executable, and players are not ex-
pected to follow long setup processes to play a game. This may be why
OSC is not used in the games industry.

9. Discussion
9.1. Analysis of trends

We identified 34 systems that fit the scope of generative music in
games. We acknowledge that this list may be incomplete, as public
information on industrial games is limited. We again acknowledge that
our taxonomy and descriptions are based upon the use of Western music
theory as a descriptive lens as discussed in Section 3, and that other
ethnomusicological lenses or descriptive tools may find alternate un-
derstandings of these systems.

We draw attention to our narrow scope of generative music in
games. We do not discuss games with highly adaptive non-generative
music, such as Final Fantasy XV [94]. We also do not discuss games
where user-selected music is used to procedurally generate a game
level, such as in Audiosurf or Beat Hazard. We also do not discuss “audio
games” [95], where music and audio are used as the primary method of
conveying information to the user. Finally, we do not discuss the “music
game” genre of games where music is mechanically important, in-
cluding games like Fract OSC or Rock Band. While these games all allow
for interaction with music, our scope is limited to games that use a
generative music system with some level of systemic autonomy, and we
have not identified any games within these genres that use generative
music.

The systems from the games industry have many commonalities
with each other. These systems generally address the arrangement task
on grid. They provide non-diegetic, ambient music. These systems
generally are specific to their game, and use a rule-based algorithm
with an external knowledge source and audio representation of music.
We believe that there are several reasons for these common trends. As
discussed, audio middleware is very common in the games industry,
and are capable of a rule-based algorithm with external knowledge
source and audio representation. Most game music is non-diegetic and
ambient, and the source of the generation does not necessarily have an
impact on the gameplay dimensions. Finally, creating on-grid ar-
rangement systems most closely matches the workflow of using com-
posed music in games.

The systems from academic research generally address the compo-
sition task with mixed directionality. These systems also primarily
provide non-diegetic ambient music, and generally are adaptive.
Academic systems are far more varied than industry systems in the
architecture dimensions, with systems using stochastic, rule-based, and
genetic algorithms, with both symbolic and audio representation, and
both learned and external knowledge sources. While this does indicate
that academic systems are more technologically advanced, it is im-
portant to recognize that many of these systems have not been in-
tegrated into or evaluated within actual gameplay. The academic sys-
tems also do not target a commercial release, which means that they
can produce music that does not sound as “good” as a human composer,
without affecting commercial success.

Generative music systems for games have trended towards audio
representation of music, especially in the industrial applications. This is
most likely due to an assumed dislike of MIDI sounds in the audience
[96], and the higher fidelity and quality of audio representation.
However, we do note that award-winning games such as Shovel Knight,
Celeste, and Luftrausers make heavy use of synthetic instruments.

9.2. Conclusion and suggestions for future work

Generative music for games is becoming increasingly commonplace,

C. Plut and P. Pasquier

and is advancing quickly. Of our 34 surveyed systems, 19 of them are
from the 10 years prior to this writing, while the remaining 15 are from
the preceeding 26 years. However, there is still much room for ad-
vancement in the area. Current systems tend to fall into two main ca-
tegories: Simple and effective systems, which are more common in in-
dustrial applications of generative music, and more advanced but
untested systems, which are more common in academia.

We believe that the future of games music will involve increasing
use of generative techniques. Generative systems can provide a greater
variety and adaptivity to music than is possible with composed music,
and with less required labour. Generative systems can also create
endless amounts of music, which is well suited to longer-duration
games. Generative systems can also provide large amounts of variety,
which is particularly useful in run-based games.

There is a valid concern that generative music may cause harm to
video game composers by rendering their work unnecessary. We note
that this concern is not reflected in the current implementations of
generative music, which require either a library of curated or provided
music, or musical expertise in the design of the system. Current Al
techniques for generative music also often require corpora of composed
music to be effective. We believe that human-composed music is still
capable of greater expression than computer generated music, espe-
cially when the game activity is predictable, and suggest that future
work in this area continue to leverage the strengths of both human-
composed and generative music together.

As we have discussed, generative music systems from the game in-
dustry generally address the arrangement task. We have identified two
main weaknesses in the current state of the art for these systems. These
weaknesses are linked together, and any attempt to rectify one weak-
ness within current paradigms exacerbates the other. The first weakness
is that the generative music systems are often highly restricted in ex-
pressive range. Red Dead Redemption (16) demonstrates this weakness —
while the system is capable of producing huge amounts of music due to
the large corpus that it draws from, the system is incapable of produ-
cing music that is not at a tempo of 130 beats per minute, or producing
music that is in any key other than a strict diatonic a minor.

The other weakness of industrial systems is that the current archi-
tecture requires large investments of labour. Anarchy Online (9) de-
monstrates this weakness. In AO, each piece of music needs to be an-
notated with transitions in and out. Additionally, changes to any music
cue requires all other cues that transition to the altered cue. This re-
quires far more labour than composed music does, as composed music
can be directly assigned to states, assuring that horizontal transitions
and vertical layers will smoothly transition to each other. These
weaknesses are exacerbated by each other — any attempt to increase the
expressive range of an arrangement system will require increased
amounts of musical variety, which will increase the amount of meta-
data required to ensure that the resulting music does not clash with
itself. Any attempt to reduce the labour cost of these systems will re-
strict the composed musical library, which reduces the expressive range
of the system.

Academic systems in contrast tend towards addressing the compo-
sition task. This removes some of the inherent weaknesses of arrange-
ment systems, but these systems also have shared weaknesses. The
biggest weakness of generative composition systems in the current state
of the art is that they are limited by their isolation from the larger game
industry context. This isolation often results in music composition
systems that could theoretically provide music for a game, but do not
engage with the interaction that differentiates games from linear media.

We suggest for academic systems to take inspiration from the re-
lated field of game-playing AIl. Many online cooperative and competi-
tive games utilize an API that allows for third-party developers to view
and respond to in-game events. The company Overwolf [97] has also
created a single, more unified interface that collects game events in
real-time from a selection of games. Companies OpenAl and DeepMind
use these competitive games to develop and test cutting-edge game-

18

Entertainment Computing 33 (2020) 100337

playing AI [98,99], and we believe that many of the same techniques
for playing games could be re-purposed to create content during ga-
meplay.

We also believe that increased investment in generative perfor-
mance and interpretation is needed for generative music to gain
widespread adoption. There is a legitimate fear in the industry that
lower quality synthesis without interpretation will be poorly received.
DOOM (2016) (27) presents an example of how synthetic sounds could
be used to enhance musical performance, as composer Mick Gordon
heavily used synthesis by hand-crafting the synthesizer sounds and
parameters. Approaching performance with generative techniques will
allow generative systems to match composed music in fidelity.

It is clear that generative, adaptive music systems have the potential
to provide not only greater variety of game music, but also more
compelling and powerful music. The academic evaluation of adaptive
and generative systems demonstrates support for this — adaptive music
has a greater effect on a player’s subjective experienced emotion [20]
than linear music, and the generative systems that have been evaluated
also demonstrate that generative systems have a similar effect, and can
cause objective affective responses as well [38,39].

There is interest in generative music in the games industry, but it is
thus far akin to dipping a single toe into the pool of possibilities. We
suggest continued cooperation between academia and the games in-
dustry, with the intent of developing systems that can address more
generative tasks with more expressive range, and that can allow com-
posers to focus on crafting musical worlds, rather than on the data-entry
labour required by many current industrial systems. We believe this
cooperation will also lead to these systems having access to more
evaluative and design resources to smooth out the rough edges that are
common in current academic systems. Ultimately, we believe that fu-
ture cooperation between academia and industry in the field of gen-
erative music for games will lead to better games with better music.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgments

We would like to thank Osama Alsaman for his assistance in re-
viewing this paper.

References

[1] Entertainment Software Association, 2019 essential facts about the computer and
video game industry, 2019.

J. Huizinga, Homo ludens: a study of the play-element in culture, International
Library of Sociology and Social Reconstruction, London, 2003.

K. Salen, E. Zimmerman, Rules of Play: Game Design Fundamentals, The MIT Press,
2004 arXiv:arXiv: 1011.1669v3.

M. Sweet, Writing Interactive Music for Video Games, Addison-Wesley, Upper
Saddle River, NJ, 2015.

P. Weir, The sound of 'no man’s sky’, 2017. https://www.gdcvault.com/play/
1024067 /The-Sound-of-No-Man.

K. Collins, Playing with Sound: A Theory of Interacting with Sound and Music in
Video Games, The MIT Press, 2013.

L. Berio, Two Interviews/Luciano Berio, M. Boyars, New York, 1985.

S. Miyamoto, Nintendo Creative Department, Super mario bros, 1985.

H. Akamatsu, Konami, Castlevania, 1986.

A. Kitamura, Capcom, Mega man, 1987.

M. Toriyama, Square Enix, Final fantasy xiii, 2009.

S. Velasco, Yacht Club Games, Shovel knight, 2014.

A. Rao, G. Kasavin, Supergiant Games, Pyre, July 2017.

T. Antoniades, Ninja Theory, Senua’s sacrifice, Hellblade, 2017.

J. Ohlen, BioWare, Black Isle Studios, Baldur’s gate, 1998.

S. Hill, Rocksteady Sudios, Batman: Arkham asylum, 2009.

J. Solomon, Firaxis Games, Xcom 2, 2016.

K. Collins, From Pac-Man to Pop Music Interactive Audio in Games and New Media,
Ashgate Publishing Ltd, Farnham, Farnham, 2011.

[2]
[3]
[4]
[5]
[6]

[7]

[8]

[91
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

http://refhub.elsevier.com/S1875-9521(19)30079-5/h0010
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0010
arxiv:1011.1669v3
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0020
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0020
https://www.gdcvault.com/play/1024067/The-Sound-of-No-Man
https://www.gdcvault.com/play/1024067/The-Sound-of-No-Man
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0030
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0030
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0035
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0070
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0090
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0090

C. Plut and P. Pasquier

[19]
[20]

[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]

[30]
[31]

[32]
[33]
[34]
[35]

[36]

[37]

[38]
[39]

[40]
[41]

[42]
[43]

[44]
[45]

[46]
[47]
[48]
[49]
[50]
[51]
[52]

[53]
[54]

[55]
[56]

[571

Vlambeer, Luftrausers, 2014.

Music matters: An empirical study on the effects of adaptive music on experienced
and perceived player affect, 2019.

P. Pasquier, A. Eigenfeldt, O. Bown, S. Dubnov, An introduction to musical meta-
creation, Comput. Entertain. 14 (2) (2016) 1-14.

P. Galanter, What is generative art? Complexity theory as a context for art theory,
in: GA2003-6th Generative Art Conference.

V. Velardo, Melodrive, 2018. https://melodrive.com/index.php.

K. Collins, An introduction to procedural music in video games, 2009.

G.N. Yannakakis, J. Togelius, Artificial Intelligence and Games, Springer
International Publishing, Cham, 2018.

W.A. Mozart, Musikalisches wiirfelspiel, 1792.

Phosfiend Systems, Fract osc, April 2014.

J. Cullimore, H. Hamilton, D. Gerhard, Directed transitional composition for
gaming and adaptive music using q -learning, ICMC (2014) 332-338.

M. Scirea, Affective music generation and its effect on player experience, Ph.D.
thesis IT University of Copenhagen, 2017.

J. Sawyer, B. Null, E. Fenstermaker, Pillars of Eternity, 2015.

Canadian League of Composers, Commissioning Rates — Canadian League of
Composers, 2015. https://www.composition.org/commissioning-rates/.

L. Stravinsky, Poetics of Music in the Form of Six Lessons, Harvard University Press,
1970.

D. Plans, D. Morelli, Experience-driven procedural music generation for games,
IEEE Trans. Comput. Intell. AI Games 4 (3) (2012) 192-198.

C. Crawford, Chris Crawford on Game Design, Peachpit, 2003
arXiv:9780201398298.

T. Challies, no man’s sky and 10,000 bowls of plain oatmeal, Oct 2016. https://
www.challies.com/articles/no-mans-sky-and-10000-bowls-of-plain-oatmeal/.

P. Hoegi, A Tabular System: Whereby the Art of Composing Minuets is Made So
Easy that Any Person, Without the Least Knowledge of Musick, May Compose Ten
Thousand, All Different, and in the Most Pleasing and Correct Manner. Invented by
Sigr. Piere Hoegi, Printed at Welcjer’s musick shop, 1763.

S. Engels, F. Chan, T. Tong, Automatic real-time music generation for games,
Eleventh Annual AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, 2015, pp. 220-222.

A. Prechtl, Adaptive music generation for computer games, Ph.D. thesis, The Open
University, 2016.

M. Scirea, J. Togelius, P. Eklund, S. Risi, Affective evolutionary music composition
with MetaCompose, Genet. Program Evolvable Mach. 18 (4) (2017) 433-465.

S. Ritchie, E. Boon, D. Watson, J. Joos Jr., Black knight 2000, April 1989.

R.v. Tol, S. Huiberts, Ieza: A framework for game audio, Jan 2008. https://www.
gamasutra.com/view/feature/3509/ieza_a_framework for_game_audio.

B. Softworks, Fallout 3, October 2008.

Nintendo, Y. Yamada, E. Aonuma, Y. Koizumi, The legend of zelda: Ocarina of time,
November 1998.

Die Gute Fabrik, Sportsfriends, 2014.

P. Magnuson, Basic rules for species counterpoint, 2008. http://academic.udayton.
edu/PhillipMagnuson/soundpatterns/speciesctpt/.

S.J. Russell, P. Norvig, Artificial intelligence: a modern approach, third ed., Prentice
Hall series in artificial intelligence, 2010.

J.A. Biles, Genjam: A genetic algorithm for generating jazz solos, Proceedings of the
International Computer Music Conference, 1994, pp. 131-137.

E.R. Miranda, D. Williams, Artificial intelligence in organised sound, Org. Sound 20
(1) (2015) 76-81.

P. Pasquier, Generative art and computational creativity. https://www.kadenze.
com/courses/generative-art-and-computational-creativity-i.

D. Conklin, I.H. Witten, Multiple viewpoint systems for music prediction, J. New
Music Res. 24 (1) (1995) 51-73.

J. Robertson, A. De Quincey, T. Stapleford, G. Wiggins, Real-Time Music Generation
for a Virtual Environment, ECAI-98 Workshop on Al/ALife and Entertainment.

T. Eerola, J.K. Vuoskoski, A comparison of the discrete and dimensional models of
emotion in music, Psychol. Music 39 (1) (2011) 18-49.

W. Wright, Spore, 2008.

K. Tatar, P. Pasquier, Musical agents: a typology and state of the art towards mu-
sical metacreation, J. New Music Res. 48 (1) (2019) 56-105.

K. Jolly, A. McLeran, Procedural music in spore, 2008. https://www.gdcvault.com/
play/323/Procedural-Music-in.

U. Schimmack, A. Grob, Dimensional model of core affect: a quantitative compar-
ison, Eur. J. Personality 14 (2000) 325-345.

C. Plut, The Audience of the Singular, Master’s thesis, Simon Fraser University,

19

[58]
[59]

[60]

[61]
[62]

[63]
[64]
[65]

[66]
[67]

[68]
[69]
[70]
[71]
[72]

[73]
[74]
[75]
[76]
[77]

[78]
[79]

[80]
[81]
[82]

[83]
[84]

[85]

[86]
[87]
[88]
[89]
[90]

[91]
[92]

[93]
[94]
[95]
[96]
[971

[98]
[99]

Entertainment Computing 33 (2020) 100337

Vancouver, BC, 2017.

D. Levine, P. Langston, D. Riordan, G. Hare, Ballblazer, 1984.

P.S. Langston, Six techniques for algorithmic music composition, in: International
Computer Music Conference. Computer Music Conference Association, San
Francisco, 2005, pp. 164-167.

K. Winbladh, H. Ziv, D.J. Richardson, iMuse, Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations of Software Engineering — FSE
’10, 2010, p. 383. doi:https://doi.org/10.1145/1882291.1882360.

P. Silk, imuse demonstration 2 — seamless transitions, May 2010. https://bit.ly/
1R39FPY.

C. Hubbard, K. Stephens, W. Saulsberry, G. Whitemore, C. Miller, S. Ryan, Monolith
Interactive, The Operative: No One Lives Forever, 2000.

Gamelab, N. Fortugno, Diner dash, 2004.

Naughty Dog, B. Straley, H. Amy, Uncharted 2: Among thieves, 2009.

T. Nispen tot Pannerden, S. Huiberts, S. Donders, S. Koch, The NLN Player: A system
for nonlinear music in games, in: International Computer Music Conference
(August), 2011, pp. 269-321.

M. Stratton, H. Martin, T. Bell, J. O’Connell, B.E. Khan, H. Martin, A. Gascoine, M.
Gordon, id Software, DOOM, 2016.

L. Reycevick, The Brilliance of DOOM’s Soundtrack, 2016. https://www.youtube.
com/watch?v=7X3LbZAXRPE.

Microsoft, Halo Series, 2001-2017.

Airtight Games, J. Perez III, J. Lamparty, Dark Void, 2010.

Archived Documents, Directmusic c¢/c reference, Apr 2009.

Funcom, Anarchy online, 2001. https://www.anarchy-online.com/.

B.A. Lagim, The music of anarchy online: Creating music for mmogs, Sep 2002.
https://www.gamasutra.com/view/feature/131361/the_music_of anarchy_online_.
php.

Ubisoft Shanghai, M. de Plater, Tom clancy’s endwar, 2008.

B. Houge, Cell-based music organization in tom clancy’s endwar, 2012.

Rockstar Games, Red Dead Redemption, 2010.

Hello Games, No Man’s Sky, 2016.

P. Hutchings, J. McCormack, Adaptive music composition for games, IEEE Trans.
Games (2019).

1. Toshio, Otocky, 1987.

United Game Artists, J. Kobayashi, T. Mizuguchi, H. Abe, K. Yamada, K. Yokata,
Rez, 2001.

Q. Entertainment, T. Mizuguchi, Child of eden, 2011.

Gaijin Games, A. Neuse, Bit.trip runner, 2011.

J. Plachy, A. Design, Chuchel, 2018.

G. Cuzzillo, Ape out, 2019.

J. Hedges, K. Larson, C. Mayer, An Adaptive, Generative Music System for Games,
2010. https://www.gdcvault.com/play/1012710/An-Adaptive-Generative-Music-
System.

P. Lopes, A. Liapis, G.N. Yannakakis, Sonancia: Sonification of Procedurally
Generated Game Levels, in: Proceedings of the 1st Computational Creativity and
Games Workshop, 2015.

U. Schimmack, R. Reisenzein, Experiencing activation: energetic arousal and tense
arousal are not mixtures of valence and activation, Emotion 2 (4) (2002) 412-417.
J. Russell, A circumplex model of Affect, J. Pers. Soc. Psychol. 39 (6) (1980)
1161-1178.

FMOD, FMOD Studio, 2016. http://www.fmod.org/products/.

Audiokinetic, Wwise, 2017.

J. Atherton, G. Wang, Chunity: Integrated audiovisual programming in unity, New
Interfaces for Musical Expression.

B. Garton, Rtcmix, 2019. http://rtemix.org/.

Epic Games, T. Sweeney, Unreal engine, 1998. https://www.unrealengine.com/en-
US/what-is-unreal-engine-4.

Unity3d, Unity, 2019. https://unity.com/.

Square Enix, H. Tabata, Final fantasy xv, 2016.

A. Preece, The world of audio games: A crash course, Nov 2013. https://www.afb.
org/aw/14/11/15738.

G. Kramer, D. Alexander, Why the Music in Dragon Quest XI is so Terrible, 2018.
https://youtu.be/xfdFU303nf8.

Overwolf, Overwolf: Tech for developers who love gaming. https://www.overwolf.
com/.

D. Farhi, J. Pachocki, S. Sidor, G. Brockman, Openai five. https://openai.com/five/.
T. Simonite, Deepmind beats pros at starcraft in another triumph for bots, Jan 2019.
https://www.wired.com/story/deepmind-beats-pros-starcraft-another-triumph-
bots/.

http://refhub.elsevier.com/S1875-9521(19)30079-5/h0105
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0105
https://melodrive.com/index.php
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0125
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0125
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0140
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0140
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0145
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0145
https://www.composition.org/commissioning-rates/
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0160
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0160
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0165
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0165
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0170
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0170
https://www.challies.com/articles/no-mans-sky-and-10000-bowls-of-plain-oatmeal/
https://www.challies.com/articles/no-mans-sky-and-10000-bowls-of-plain-oatmeal/
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0185
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0185
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0185
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0195
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0195
https://www.gamasutra.com/view/feature/3509/ieza_a_framework_for_game_audio
https://www.gamasutra.com/view/feature/3509/ieza_a_framework_for_game_audio
http://academic.udayton.edu/PhillipMagnuson/soundpatterns/speciesctpt/
http://academic.udayton.edu/PhillipMagnuson/soundpatterns/speciesctpt/
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0235
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0235
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0240
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0240
https://www.kadenze.com/courses/generative-art-and-computational-creativity-i
https://www.kadenze.com/courses/generative-art-and-computational-creativity-i
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0250
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0250
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0260
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0260
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0270
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0270
https://www.gdcvault.com/play/323/Procedural-Music-in
https://www.gdcvault.com/play/323/Procedural-Music-in
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0280
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0280
https://doi.org/10.1145/1882291.1882360
https://bit.ly/1R39FPY
https://bit.ly/1R39FPY
https://www.youtube.com/watch?v=7X3LbZAxRPE
https://www.youtube.com/watch?v=7X3LbZAxRPE
https://www.anarchy-online.com/
https://www.gamasutra.com/view/feature/131361/the_music_of_anarchy_online_.php
https://www.gamasutra.com/view/feature/131361/the_music_of_anarchy_online_.php
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0385
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0385
https://www.gdcvault.com/play/1012710/An-Adaptive-Generative-Music-System
https://www.gdcvault.com/play/1012710/An-Adaptive-Generative-Music-System
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0430
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0430
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0435
http://refhub.elsevier.com/S1875-9521(19)30079-5/h0435
http://www.fmod.org/products/
http://rtcmix.org/
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://unity.com/
https://www.afb.org/aw/14/11/15738
https://www.afb.org/aw/14/11/15738
https://youtu.be/xfdFU3O3nf8
https://www.overwolf.com/
https://www.overwolf.com/
https://openai.com/five/
https://www.wired.com/story/deepmind-beats-pros-starcraft-another-triumph-bots/
https://www.wired.com/story/deepmind-beats-pros-starcraft-another-triumph-bots/

	Generative music in video games: State of the art, challenges, and prospects
	Introduction and motivation
	Game audio and music
	Generative and adaptive music
	Motivation
	Challenges

	Typology of generative game music systems
	Musical typology definitions
	Generative task
	Composition
	Arrangement
	Performance/interpretation

	Directionality
	Granularity
	Horizontal properties
	Note
	Beat
	Measure
	Phrase
	Chord

	Vertical properties
	Instrument parameter
	Instrument
	Instrument group
	Chord

	Grid/groove
	On grid
	Off grid

	Interactions between musical dimensions
	Horizontal composition
	Note
	Chord

	Vertical composition
	Horizontal arrangement
	Beat
	Measure
	Phrase

	Vertical arrangement
	Instrument
	Instrument group

	Performance

	Gameplay dimensions
	Diegesis
	Diegetic
	Non-diegetic

	Ambience
	Sourced
	Ambient

	Adaptivity/autonomy
	Linear
	Adaptive
	Reactive

	Architecture dimensions
	Generality of the system
	Generic
	Specific

	Generative algorithm used by the system
	Rule-based
	Stochastic
	Genetic algorithm
	Artificial Neural Network
	Other approaches

	Musical representation
	Symbolic
	Audio

	Musical knowledge source
	External
	Learned

	Examination of musical systems
	Composition systems
	Horizontal composition

	Arrangement systems
	Horizontal arrangement
	Vertical arrangement
	Mixed arrangement

	Performance systems
	Fringe systems

	Tools for adaptive and generative music
	Audio middleware
	iMuse
	DirectMusic
	PureData
	Other languages
	Custom synthesizers
	Open Sound Control

	Discussion
	Analysis of trends
	Conclusion and suggestions for future work

	mk:H1_88
	Acknowledgments
	References

