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ABSTRACT
Autonomously generating artificial soundscapes for video games, virtual reality, and sound art
presents several non-trivial challenges. We outline a system called Audio Metaphor that is built
upon the notion that sound design for soundscape compositions is emotionally informed. We first
define the problem space of generating soundscape compositions referencing the sound design
and soundscape literature. Next, we survey the state-of-the-art soundscape generation systems
and establish the characteristics and challenges for evaluating these types of systems. We then
describe the Audio Metaphor system that aims to model the soundscape generation problem
using amethod of soundscape emotion recognition and segmentation based on perceptual classes,
and an autonomous mixing engine utilising optimisation and prediction algorithms to generate a
soundscape composition.We evaluate the soundscape compositions generated by AudioMetaphor
by comparing them with those created by a human expert and also those generated randomly.
Our analysis of the evaluation study reveals that the proposed soundscape generation model is
human-competitive regarding semantic and emotion-based indicators.
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1. Introduction

The field of sound design, which includes game sound,
sound design for virtual reality (VR), and soundscape
composition, develops alternative audio related solu-
tions for sound-related problems. Soundscape composers
aim at creating a type of electroacoustic music that
Truax (1996) describes as ‘characterised by the presence
of recognisable environmental sounds and contexts, the
purpose being to evoke listeners’ associations, memories,
and imagination related to the soundscape’. Although
varying in intent, sound designers align with soundscape
composition in terms of communicating an environment
to the listener. For a video game, the sound designer aims
to enhance the narrative experience by creating an ani-
mated set of sound effects corresponding towhat is on the
screen. A sound designer working on the sound design
for a VR environment creates realistic soundscapes to
increase a sense of place by simulating what would be
heard if the user was in a real or imagined location
(Serafin & Serafin, 2004).

Sound designers face numerous challenges posed by a
growing number of sound files and the increased com-
plexity of interactive environments, such as video games
and virtual reality. Further, many of the tasks of the
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sound designer, such as producing draft sound designs
in production environments, or searching and listening
to sound files from a large database, can be repetitive, and
providing tools for assisting in this field is valuable.

In order to unify the sound design practices described
here, we will use the concept of a soundscape. The con-
cept of a soundscapewas first proposed by Schafer (1977),
and framed in a communication model by Truax (2001)
as a way of understanding the acoustic environment as
a carrier of information. According to Truax (2012),
soundscape composition has many possible applications
that have distinct practices of representing the world.
Looked at from a communication model, the different
applications of sound design share the quality of commu-
nicating information to a listener about a real or imagined
environment. Figure 1. demonstrates the relationships of
different sound design contexts on the continuum mov-
ing from realistic to abstracted. The research here inves-
tigates computationally-assisted tools for sound design
production, with focus on soundscapes trending toward
the real end of the continuum, outlined on the figure
in grey.

In creative practice, soundscape compositions can be
generated by directly recording real-world environments,
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Figure 1. Continuumof ambiance focus from real sounding envi-
ronments, to more abstracted spaces. Production contexts range
across the continuum.

retrieving files from a database, artificially generat-
ing them in a production environment, or by some
combination of these techniques. Each of these
approaches has an associated cost. For example, location
recordings document a locale at a specific time. A draw-
back to location recording is that it is costly to visit a
location and the recordings obtained can be impacted by
unwanted environmental factors such as wind and traf-
fic. Databases of soundscape recordings are collections
of location recordings made by companies and enthu-
siasts. Databases overcome many of the costs associated
with location recording, and offer a wide range of sound-
scapes. However, recordings are still limited to a fixed set
of items. If no recording fitting a specification exists, then
the sound designer must make a location recording, or
create an artificial soundscape.

The most flexible method for generating soundscapes
is to artificially produce them. The typical method is
to combine particular environmental sounds obtained
through synthesis using computational models or using
parts of existing recordings. Current tools for making
artificial soundscape compositions require a highly spe-
cialised skill set, and are often time-consuming. There-
fore, computational tools to automate the tasks would
be beneficial for sound designers. Furthermore, compu-
tational tools could make dynamic sound designs that
respond to non-linear environments in video games and
virtual reality possible.

Concerning generating a soundscape composition,
researcher and soundwalk artist McCartney (2002)
broadly outlines the basic tasks as follows:

(1) Specify an environmental context – The specifica-
tion is a description of the environment to be rep-
resented in the sound design;

(2) Sound file retrieval – Sound files matching the spec-
ification, or parts thereof, will be retrieved from a
database using semantic criteria, such as keyword
search;

(3) Listen for salient regions in recordings – A sound
file is curated for parts that hold an aesthetic inter-
est. These regions are extracted for processing and
mixing;

(4) Mix and sequence – Regions are sequenced on
a timeline, and panning, attenuation, and sound
effects applied to the sound design output;

Schafer (1977) found that acoustic properties alone
failed to account for the human experience of sound.
Based on these findings, an automated system for cre-
ating meaningful soundscapes must consider the human
experience.

However, attempts at synthesising humanunderstand-
ing and decision processes are limited by the accu-
racy and extent at which the model represents human
experience. The complexity of sound design is, in part,
produced by the minutiae of human expectations and
responses to the auditory environment. To account for
this detail, sound designers select and combine multiple
sounds using a variety of techniques.

We will describe Audio Metaphor, a system for gen-
erating a mix of soundscape compositions based on
given descriptions and a database of existing soundscape
recording files. This system utilises acoustic features,
semantic information, and emotional characteristics of
soundscape recordings.

We limit the scope of the research here to combine
the emotion and semantic attributes of audio file selec-
tion, and apply this to the problem of mixing sounds. In
doing so, we describe our contributions in advancing an
autonomous soundscape generation system by develop-
ing techniques from computational creativity, machine
learning, and audio signal analysis for the automation of
soundscape composition tasks, including search, classifi-
cation, and mixing.

This paper outlines the background and research for a
soundscape generation system.Wedescribe one such sys-
temnamedAudioMetaphor. After an introduction to the
soundscape generation problem in Section 2, we put for-
ward our research questions. In Section 3, we survey the
field and define a soundscape generation system typology
for establishing the focus of the research. We then anal-
yse the evaluation methodology of generative systems in
Section 4. Thereafter, in Section 5, we outline our cur-
rent work toward defining and modelling characteristics
of soundscape and sound design, including the algorithm
for generating soundscapes. Sections 6 and 7 are about
our evaluations and discussion, respectively. Finally, in
Section 8, we present our concluding remarks.

2. Motivation and objectives

Soundscape composition is a contemporary form of elec-
troacoustic music and sound art. A common characteris-
tic of this type of art is the presence of recognisable envi-
ronmental sounds and contexts. The purpose of these
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sounds and contexts is to evoke the listeners’ associations,
memories, and imagination related to the soundscape.

Our research explores how a machine can
autonomously generate soundscape compositions. We
identify the requirements of soundscape generation by
refining the tasks outlined by McCartney (2002) to four
(4) modules needed by generative soundscape systems:
soundscape context representation, search, classification
and segmentation, and mixing.

2.1. How can amachine generate a soundscape
with the features of a text-based description?

Soundscape context representation requires a computa-
tionalmethod for describing the semantic and perceptual
qualities of a soundscape. Using a survey to study how
people describe soundscapes, Pedersen (2008) found that
some people reference objects and eventsmaking sounds,
whileDavies et al. (2007) observed the population sample
also used subjective feelings of the qualities of sound-
scapes. Although Niessen, Cance, and Dubois (2010)
observed that there is a difference in the language used
to describe soundscapes between cultural groups, Dubois
and Guastavino (2006) found general commonalities
for describing soundscapes. For example, a shared lan-
guage is used as the basis of sound design for film,
which as described by Sonnenschein (2001), involves
the close reading of a script as a specification for sound
design.

Based on the evidence in the literature, we choose
to use a text-based utterance for representing a sound-
scape recording. We unpack an utterance representa-
tion taking into account how people communicate about
soundscapes by exploring a text analysis algorithm.
The algorithm maps descriptive words to items from a
database with the aim of optimising search results for
soundscape generation systems.

2.2. How can amachine generate soundscape
compositions that have the basic structural
elements?

Classification and segmentation require a set of machine
learning tasks to automatically cut and label audio
recordings. According to Schafer (1977), a soundscape
has many types of sounds that fall into a set of perceptual
categories:

• Keynote. These sounds appear to come from farther
away, or occur in high frequency and belong to the
aggregate of all sounds that make up the background
texture of a soundscape.

• Sound signal. These sounds are typically heard in
the foreground, standing out clearly against the
background.

• Soundmark. A soundmark can be either background
or foreground sound, and is culturally specific so that
it defines a locale.

A soundscape has both sound signal and keynote
sounds, which occur individually or simultaneously, and
a soundscape composition may contain both these types
of sounds. A sound designer needs to pay attention to
these sounds when generating a soundscape composi-
tion because, similar to real soundscapes, a soundscape
composition needs to represent both sound signal and
keynote sounds. To obtain these different types of sounds
from a recording, a sound designer will listen to sound-
scape recordings and extract regions to mix together.

Keynote sounds are associated with the background
sound of a soundscape, while sound signal sounds are
associated with the foreground. Hence, a background
and foreground classifier would be a practical way to
approximate these sound types.

Soundmark classification, on the other hand, requires
a subjective appraisal of a listener to recognise cultural
significance, and both background or foreground sounds
can be soundmarks. Such sounds could be recognised
by a computer that has an extensive collection of user
models that map locale and semantic information to par-
ticular users. However, such a model is outside of the
scope of this research.

Instead, we will concentrate onmodelling background
and foreground sound. A sound can be either back-
ground or foreground depending on factors including
listening context and attention. Schafer (1977) outlines
the following six types of sound:

(1) Natural sounds: e.g. birds, insects, rain;
(2) Human sounds: e.g. laugh, whisper;
(3) Sounds and society: e.g. party, church bells, concert;
(4) Mechanical sounds: e.g. airplane, machines, cars;
(5) Quiet and silence: e.g. dark night, wild space; and
(6) Sounds as indicators: e.g. clock, doorbell, siren.

With any of these types of sounds, the external lis-
tening context influences background and foreground
classification. For example, the sound of a drop of water
in the bathtub is accentuated by the bathroom envi-
ronment, whereas it becomes a part of the background
texture when in the ocean. The listeners’ attention is
the second factor in perceiving a sound as background
or foreground. For example, the sound from the TV is
foreground when a show is being watched, but becomes
background when the viewers’ attention is turned to a
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conversation in the kitchen. Similarly, Truax (2001) out-
lines how listening is a dynamic process of different lis-
tening modes. Listening modes can treat any sound as
either background or foreground depending on the level
of attention being paid at any given moment.

Our research accounts for context but not attention
i.e. the drop of water example will work, but the TV
listening example will not. When the context is being
addressed, background sounds seem to come from far-
ther away than foreground sounds, or are continuous
enough to belong to the aggregate of all sounds thatmake
up the background texture of a soundscape. This is syn-
onymous with a ubiquitous sound, specified byAugoyard
and Torgue (2006) as ‘a sound that is diffuse, omnidi-
rectional, constant, and prone to sound absorption and
reflection factors having an overall effect on the quality
of the sound’. Urban drones and the hum of insects are
two examples of background sound. Foreground sounds
are typically heard standing out clearly against the back-
ground. At any moment there may be either background
sound, foreground sound or a combination of both.

2.3. How can amachine generate soundscape
compositions that are perceived to have a particular
emotion?

Another characteristic of soundscapes is the perceived
emotion of the soundscape (Berglund, Nilsson, & Axels-
son, 2007; Botteldooren, Coensel, & Muer, 2006; Hall,
Irwin, Edmondson-Jones, Phillips, & Poxon, 2013). Due
to the subjective nature of emotion, it is natural that peo-
ple have different emotional responses towards the same
content. Therefore, it is essential to define different types
of emotions. There are three types of emotion for when
an individual is listening to music and soundscape or
watching films:

• Intended emotion: The emotional response that
the music/movie attempts to evoke in its viewers
(Malandrakis, Potamianos, Evangelopoulos, & Zlat-
intsi, 2011).

• Perceived emotion: Emotions that are communicated
and expressed by the source (Kallinen&Ravaja, 2006).

• Induced emotion: Emotional reactions that the source
provokes in an audience (Kallinen & Ravaja, 2006). It
is what the audience feels from the source.

The perceived emotion is the emotion the source con-
veys. The perceived emotion of happy songs is always
‘happy’. However, the induced emotion is more sub-
jective. The same happy music may not necessarily
induce happiness in the listener. In this study, we focus
on the perceived emotion of soundscape compositions.

Intended emotion is the target emotion that sound
designer trying to achieve. For example, the quality of
a soundscape in a haunted abandoned village is differ-
ent to that of one that is associated with a sunny vil-
lage, on a festive day. Jianyu, Miles, and Philippe (2015),
Fan, Thorogood, and Pasquier (2016), Fan, Thoro-
good, Tatar, and Pasquier (2018) and Fan, Tung, Li,
and Pasquier (2018) conduct a series of studies to investi-
gate soundscape emotion recognition.However, previous
studies only focus on analysing soundscape emotion. To
date, soundscape generation systems have not accounted
for emotion.

We explore methods from affective computing for
predicting the perceived emotion of a soundscape. The
affective computing literature has proposed different
models for representing emotion (Scherer, Bänziger,
& Roesch, 2010). Two types of models that are regularly
cited are categorical and dimensional models. The cat-
egorical model classifies a sample belonging to a finite
number of emotions. For example, a common set of
categories includes sad, happy, angry, and relaxed.

Alternatively, the dimensional model of affect views
emotion as a point along dimensions - somewhere
between happy and sad, for example. A widely recog-
nised dimensional model proposed by Russell, Weiss,
and Mendelsohn (1989) shows emotion as being a point
in a multidimensional space of valence and arousal. The
dimensional model can be used to allocate specific emo-
tions to a particular region of the continuous space (Kim
et al., 2010). For example, excited is associated with high
valence and high arousal.

The dimensional model of affect is used in many sur-
vey studies as an effective tool for evaluating soundscapes
(Berglund et al., 2007; Brocolini et al., 2010; Davies,
Adams, Bruce, Carlyle, & Cusack, 2009), showing agree-
ment for the perceived affect of particular soundscapes.
The simplicity and success of the dimensional model is
encouraging, warranting investigation as a method of
computational representation of perceived emotions of
soundscapes. We evaluate the feasibility of using this
model for soundscape generation systems with tech-
niques from music information retrieval, including psy-
choacoustic study, feature extraction, and standard statis-
tical pattern matching.

2.4. How can amachine generate a soundscape
composition the evokes thememories and
associations of a real or imagined soundscape?

Broadly, mixing is the process of combining sounds and
modulating volume and spectral parameters. The search
space of mixing is combinatorial and inherently large.
The sound design literature (Bazil, 2008; Brandon, 2005;
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deBeer, 2012; Farnell, 2010) describes how an experi-
enced sound designer obtains knowledge of techniques
to apply for the highest likelihood of success in moving
toward the intended audio output.

One method of specifying a soundscape is by describ-
ing an environmental context, as is common with the
description of sound design on a film script. For example,
the creepy house has bats in the attic. A sound designer
uses a set of sound files obtained from a search, along
with signal processing techniques to create a mix repre-
senting that specification. A sound designer must audi-
tion and subsequently segment sound files from a search
using criteria such as background/foreground and emo-
tion. Finally, sound files are sequenced on a timeline and
signal processing techniques are applied to satisfy the
specification and overall aesthetic continuity.

State of the art soundscape generation systems use
techniques from AI, machine learning, and audio sig-
nal analysis to autonomously mix soundscape record-
ings and automate sound design tasks (Bruce, Davies,
& Adams, 2009; Casu, Koutsomichalis, & Valle, 2014;
Janer, Kersten, Schirosa, & Roma, 2011; Thorogood,
Pasquier, & Eigenfeldt, 2012; Valle, Schirosa, & Lom-
bardo, 2009). However, modelling sound design princi-
ples, such as emotion, remains an open problem. Fur-
ther, evaluating such systems in comparison with human
sound design still needs to be explored. In response, we
outline a computational model of sound design princi-
ples, and integrate it into established search algorithms
for generating soundscape compositions.

3. Related soundscape generation systems

Multiple soundscape generation systems have used dif-
ferent approaches to automating sound file retrieval, seg-
mentation, and arrangement. These approaches take the
direction of either operating in realtime or offlinemodes,
displaying different levels of automation, and applying
different sequencing techniques.

From the literature, two soundscape generation mod-
els emerge. The first model uses a layered approach to
mixing, which reflects the process of multitrack record-
ing software (for example, Audacity, Reaper). In this
model, there is an arbitrary number of audio tracks with
audio clips sequenced along a timeline. This approach
calls for creativity in selecting and mixing together
sounds, and is the primary means of production in
sound design for linear media and soundscape compo-
sition. Another approach is to simulate sound sources
in an environment based on a realistic sound spatializa-
tion. In the spatialization approach, which is common in
game engines (Firelight Technologies, 2002 andAudioki-
netic, 2000 for example), a virtual listener is placed in

a virtual 3D environment and sounds are added to the
environmentwith attributes such as position andmotion.

Birchfield, Mattar, and Sundaram (2005) report on
a semi-autonomous system that uses a selection of
user models that influence sound selection and mixing
parameters of the system. A database of 300 sound files
was curated and annotated by the researchers accord-
ing to spatial placement, location, and soundscape con-
texts. The system automatically selected sound files and
mixed these together based on the usermodel, taking into
account users contextual expectations of sounds.A sound
designer then made decisions on applying effects.

Cano, Fabig, Gouyon, and Loscos (2004) describe a
system of file selection, audio track sequencing and mix-
ing for semi-automatic ambience generation. The system
then selects sounds from text-based utterances using a
keyword-spotting technique that links concepts of the
keywords and returns a randomised set of sound files
with the same concept from a database indexed by tags.

Cano et al. outline a soundscape model of mixing long
ambient sounds with short event sounds occurring at
intervals corresponding to moments of less energy in the
ambience. Similarly, Salamon, MacConnell, Cartwright,
Li, and Bello (2017) generates a soundscape as a series
of foreground events and a single background record-
ing. The user must supply the collection of classified
sound clips.

Using a similar model of sequencing sounds, Rossig-
nol, Lafay, Lagrange, and Misdariis (2014), describe the
soundscape generation system SimScene for creating
material in psychology studies on soundscape percep-
tion. Rossignol et al. manually label sets of sounds for tex-
tures and events using an urban sound taxonomy, organ-
ising sounds based on the domain, category, and sound
class. They define the SimSound soundscape model as
background texture with multiple types of event sounds
occurring at distinct intervals. A user selects a sound
event and texture class through a graphical interface.
SimSound generates a texture by concatenating texture
files for that class, and sequences all sounds of the selected
event class according to parameters set by the user.

As another approach, Eigenfeldt and Pasquier (2011)
designed a system which combined autonomous soft-
ware agents and audio signal analysis to generate a con-
tinuously evolving soundscape composition. Similar to
Birchfield et al. (2005), a database of sound files were
curated and selected by the researchers. Software agents
generated a layered soundscape composition in real-
time using sound file-selection criteria negotiated on
the basis of semantic tags and spectral attributes. The
resulting compositions, although well-formed, were not
rated as highly as similarly constrained human-made
compositions.
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Thorogood et al. (2012) outline a system to
autonomously curate and select sound files based on
text analysis of social media posts and sound file
descriptions. Thereafter, sound file recommendations are
pushed to a human performer for mixing. Thorogood
and Pasquier (2013a) later describe a system that auto-
mates the segmentation procedure based on a machine
learning approach to classify audio signal with sound-
scape perception model of background and foreground
classes. The system then selected and applied effects for
a layered soundscape based on a set of rules informed
by production notes from the soundscape composition
Island by Canadian composer Barry Truax (2009).

Another method of selecting, annotating, and mix-
ing sound files is to capitalise on the user’s propensity to
generate data in online media sharing platforms (Roma
et al., 2012). Roma,Herrera, and Serra (2009) use a sound
file dataset and users’ behaviours from the file-sharing
platform Freesound (Akkermans et al., 2011) for gener-
ating continuous mixes of sound files. Through the web
interface, users linked sounds together from the database
into simple sound design patches: a directed graph of
sounds as vertices and edges of the play order path. A
linear crossfade applied between sounds completed the
composition. Users then rated each other’s patches that
were processed using an interactive genetic algorithm to
create new patches.

Finney and Janer (2010) designed a semi-autonomous
system for generating soundscapes in virtual environ-
ments. Sounds used in their systemwere hand-picked for
audio quality and semantic attributes viewed as germane
to the represented environment. Sounds were mixed
using an interactive map interface, and combined into
background or foreground layers.

Roma et al. (2010) use a technique for autonomously
labelling sound files with high-level concepts from the
sound taxonomy proposed by Gaver (1993). Using these
autonomously labelled files, Janer et al. (2011) and
Janer, Roma, and Kersten (2011) developed a semi-
autonomous system for augmented reality systems that
generated soundscapes for virtual environments. Their
strategy was to provide an authoring environment that let
users select sounds based on the taxonomy and seman-
tic tags, and position sounds by hand using a map
interface.

Works utilising soundscape creation for virtual envi-
ronments, such as from Tactical Sound Garden Toolkit
by Shepard (2007) and the Urban Remix project by Free-
man, DiSalvo, Nitsche, and Garret (2011), move toward
the development of collaborative recording, exploration,
and soundscape creation systems. These systems pro-
vided participants with a mobile interface for recording
and tagging environmental sounds on a map interface.

Sounds are layered based on geographic locations and
spatialised as a virtual soundscape based on the user’s
proximity.

Yet another soundscape generation system is outlined
by Casu et al. (2014), who describe a set of automated
search and composition tools named SoDA for assist-
ing sound designers with generating soundscapes. SoDA
uses a database of sound files accompanied by a set of
corresponding RDF documents. The user enters sound
description fields by hand and the machine automa-
tion enters analysis features. SoDA’s soundscape model
is based on a physical model, with an omni-directional
background sound, and sequences of shorter sound
events occurring in a 3D space relative to where the
sounds occur in physical space.

As outlined in the literature, different systems aim
toward making one or more of the repetitive and time
consuming tasks of working with sound more accessible
to a user/author. In doing so, these systems can reveal
patterns in the sound data that make manifest multi-
ple sound design solutions that address a specific criteria
encoded in the programming.

Our research here aims to address the problem of
automating sound file search, retrieval, segmentation,
and arrangement for sound design production using
the semantic and sentiment criteria. In doing so, we
model parts of the semantic and sentiment space of
soundscapes that is utilised in the generation of artificial
soundscapes.

4. Related evaluationmethodologies

This section describes the related work in evaluating
computationally assistive and creative machines in order
to frame our evaluation methodology. To evaluate the
AudioMetaphor systemhere, we design a group of exper-
iments grounded in the computational creativity litera-
ture for testing the validity of the output of the system. As
Arthur Flexer (2006) and Jordanous (2011) state, evaluat-
ing creative systems is important for elucidating progress
in the research, and proposals have been put forward as
the most valid means evaluating these types of systems
(Pearce & Wiggins, 2001; Pease & Colton, 2011; Ven-
tura, 2008). In general, asking if a system is capable of
creativity is a dyadic question. On the one hand, the ques-
tion is whether the process conducted by the machine
can be considered creative. While on the other hand, the
question is if the output of the system is considered to be
a creative artefact.

While both of these questions are compelling in
observing the creativity of a system, we are concerned
with the soundscape compositions generated by Audio
Metaphor. Specifically, we need to ascertain the quality
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of the generated soundscape compositions in compar-
ison to a soundscape composition made by a human
expert. Notwithstanding that Audio Metaphor is mod-
elling sound design tasks and executes these tasks sim-
ulating human processes, we focus the evaluation on
whether the output of the system is considered to be a
creative artefact relative to human endeavours.

Evaluating the creative output of a system such as
Audio Metaphor can be achieved by either analysing the
output of the system in relation to a corpus of expected
outputs, such as the methodology outlines by Thomas,
Pasquier, Eigenfeldt, and Maxwell (2013), or the outputs
of the system can be given to human judges to listen and
rate against some criteria. The former method is appro-
priate when a corpus of expected results exists, while
the latter asks questions where the success of the sys-
tem depends on a more subjective nature. As such, the
soundscape compositions generated by Audio Metaphor,
expressing emotion and sound design quality, are best
suited to evaluation by listeners who will rate the sound-
scape compositions.

4.1. Evaluating for creativity support tools

Creativity support tools (CST) is a branch of human-
computer interaction (HCI) studying systems for assist-
ing in human creativity tasks. A fundamental element
of HCI is evaluating systems with the appropriate met-
rics and evaluation methodology. For example, Candy
and Edmonds (1997) identify three (3) criteria for eval-
uating interaction in software systems. These measures
require a system to provide methods for modifying the
knowledge base, examining the system as to the rea-
son for an outcome, and comparing different alterna-
tives. The motivating factor of these criteria is to under-
stand the interactions of users with the system in creative
applications.

Cherry and Latulipe (2014) define another set of crite-
ria, named the Creativity Support Index (CSI), for eval-
uating computer-assisted creativity tools. Similar to the
principles of Candy and Edmonds, CSI aims at assessing
an interactive system based on the engagement of users,
factoring in immersion, enjoyment, and collaboration as
criteria.

Audio Metaphor aims at generation, not user interac-
tion, and does not to aim to meet the above criteria. In
particular, the knowledge base rules of Audio Metaphor
are inaccessible for modification by the user, decisions
of the system are opaque, and there is no functional-
ity for comparative evaluations of alternatives. However,
future work will look at more user input, looking at CST
research such as these.

4.2. Evaluating computational creativity

As an alternative to evaluating with creativity support
tools, we use an evaluation methodology grounded in
the computational creativity literature to evaluate Audio
Metaphor. Computational creativity aims at developing
computer programs that output human-competitive cre-
ative behaviours and artefacts. Wiggins (2006) suggests
a system is considered creative if behaviour exhibited by
the systemwould be deemed creative were it exhibited by
a human. Boden’s (2004) distinction between P-creativity
and H-creativity is also helpful in determining the cre-
ative behaviour of Audio Metaphor. P-creativity involves
generating surprising and novel instances of existing
ideas, such as a song in a music genre for example. On
the other hand, H-creativity is an entirely new idea, such
as a new music genre. The output of the system here
is P-creative, such that the search space is bounded by
a set of established mixing processes defined by sound
design.

In studying soundscape generation systems, we need
to ascertain if the generated soundscape compositions are
considered novel and valuable in fair competition with
human efforts. Pearce andWiggins (2001) describe a sim-
ple evaluation methodology for judging if composition
systems are indistinguishable from human-made pieces.
In this type of discrimination test, a group of study partic-
ipants presented with compositions discern if a machine
generated and/or a human created the piece.

Psychometric data obtained with a Likert-scale and
reported with a t-test statistic is a method widely used
for evaluating creative systems. Likert-scales are a type
of questionnaire used to get listener responses (Finney
& Janer, 2010), with a scale for each response. For
example, to the proposition ‘I like Justin Beiber’, a 3-
point Likert-scale may have Disagree - Neutral - Agree.
However, when used in evaluating creative systems, one
argument suggests people are biased when it comes
to machine made artefacts (Moffat & Kelly, 2006). In
response, Ariza (2009) outlines the Musical Output Toy
Test to account for such bias. A computer and a human
composer generate a piece of music as a digital recording
or a score, the two composers have access to the same set
of resources, and the music must be an original composi-
tion. A participant is informed that a machine generated
some of the music and is asked to distinguish the human
from the machine compositions.

Although we investigate the human-versus-system
dyad by comparing listener responses to soundscape
compositions generated by Audio Metaphor and a
human composer, we are also interested in explor-
ing questions of sound design principles of emotion
and soundscape characteristics defined in the system.
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Jordanous (2011) proposed evaluating creative systems
based on the creative domain specifics, the aspects of
creativity that are important, and the set of standards
used for evaluating the system. With this type of eval-
uation, deception can be used for circumventing a par-
ticipant’s biases of machine-generated artefacts. In which
case, participants will not be informed a machine is
involved.

Eigenfeldt and Pasquier (2011) adapt this approach
for evaluating a soundscape generation system. In their
study, listeners rank system and human generated sound-
scapes with questions grounded in the soundscape
composition literature. We embrace the methodological
approach taken by Eigenfeldt and Pasquier in defining
the creative domain specifics for establishing questions
for determining the system’s successes. However, design-
ing a study for obtaining psychometric data is notwithout
problems.

When planning a study using a Likert-scale, there is
no definitive consensus on the adequate scale length.
Further, the validity of using a Likert-scale in a study
such as ours has been called into question (Pease
& Colton, 2011). In a study such as ours, a Likert-scale
would have terms at either end of the scale represent-
ing ends of a continuum. A participant enters a response
between these terms on a discrete scale. For example,
unpleasant – pleasant is one such pair of words. If a
participant enters a value of 0, they perceive the sound-
scape to be downright unpleasant. Responses signify less
unpleasant toward the centre of the scale, andmore pleas-
ant as they move toward the pleasant term, and entirely
pleasant at the end of the scale.

The length of the scale, or the number of response
alternatives, is a factor in experiment design. Symonds
(1924) asserts that using a 7-point scale achieves an
optimal level of score reliability. Cook, Heath, Thomp-
son, and Thompson (2001) suggest increasing the num-
ber of response alternatives increases score variance,
and thus increase score reliability. As another consid-
eration to the design of a Likert-scale, Garland (1991)
identifies that the presence of a mid-point when using
Likert-scales, as is the case with an odd-number of selec-
tions, results in a social desirability bias on the part of
a respondent’s desire to please the interviewer or appear
helpful.

Matell and Jacoby (1971) suggest, when includ-
ing a mid-point, the effect of social desirability bias
is reduced with Likert-scales of increasing length.
Although even with a 21 point scale, Pearse (2011)
shows that respondents have a tendency to choose the
mid-point response. Garland (1991) demonstrated that
social desirability bias is minimised by eliminating the
mid-point.

5. Mixing engine

We wish to model the formal definitions of soundscape
properties to demonstrate the proposed framework. Our
soundscape mixing engine will be based on a model of
sound design originating from principles in the literature
and observations of sound design practice. The informa-
tion gathered in the model design will inform the explo-
ration of a generative system. To achieve our research
objectives, we adopt a multidisciplinary approach. The
motivation of this approach is the complex problem space
of designing systems for synthesising human creativity. In
our system, we adopt and combine methods from mod-
elling expert domains, text analysis, music information
retrieval, machine learning, and artificial intelligence.

The mixing engine generates soundscape composi-
tions that are perceived to have acoustic properties corre-
lating with the semantic and sentiment specifications. To
achieve this goal, we design a mixing engine to generate
a soundscape composition from a text-based utterance
and curves for the movement of valence and arousal
over the duration of the soundscape composition. The
engine has access to a database of audio segments indexed
by semantic descriptors, valence and arousal values, and
whether the sound is perceived as background or fore-
ground. The engine creates background and foreground
tracks for each of the soundscape concepts, and assigns
sound recording segments to those tracks. We define the
terms of our system as follows:

Input Specification. The input specification is an utter-
ance (e.g. ‘the quiet stream and the busy traffic’), together
with a set of sound segments corresponding to each con-
cept, plus the duration of the soundscape composition,
ranging from20 s to 2min, and a vector of values between
0 and 1 representing the curves for for pleasantness and
eventfulness.

Sound Source Concept. Here a sound source concept is
part of an utterance that is used for searching a database
for corresponding sound segments. There may be one or
more concepts in an utterance, and a typical specification
will have from 1 to 10 concepts. If an utterance has no
concepts, then there are no segments, and a soundscape
composition is not generated.

Segment. A segment is a region of a sound file related
to a sound source concept. We also introduce a segment
containing silence that can be assigned to a track.

Track. A track supports both a stereo and mono seg-
ments. Two tracks are created for each concept. One
contains the background segments; the other contains
foreground segments.

Mix. A mix has background and foreground tracks
for each sound source in the set provided at the input
specification.
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Decision Point. A decision point is a trigger point
occurring when a segment ends or at an interval of 1 s,
whichever is sooner. At a decision point, a new segment,
which is also possibly silent, is added to an empty track.

The engine must determine the segments to assign
to tracks subject to a number of constraints. We for-
malise this problem by determining the variables, and the
constraints needing optimisation.

5.1. Soundscapemix generation

Themixing engine generates amix by assigning segments
at decision points based on the output from the objective
function. Initially, the segments are retrieved by a search
algorithm from a database of field recordings indexed
by user-contributed tags, which Lamere (2008) identifies
as valuable to music information retrieval. We adopt the
file search protocol outlined by Thorogood et al. (2012)
that uses a keyword-spotting and grouping technique to
optimise the diversity of sounds presented for mixing.

We then use a BF classifier, an audio file segmentation
system that segments the selected recordings according
to the perceptual categories, including background, fore-
ground, and backgroundwith foreground sound (Thoro-
good, Fan, & Pasquier, 2015, 2016). The system was built
based on a corpus of background, foreground, and back-
ground with foreground soundscape recordings. Previ-
ous analysis of annotations has demonstrated a high
degree of certainty for these three categories. Thorogood
et al. train a Support Vector Machine classifier and eval-
uated the classifier with different analysis window sizes.
The results indicate the effectiveness of the classification.

Next, we use a soundscape emotion recognition sys-
tem described by Thorogood and Pasquier (2013b) and
Fan et al. (2016) to label the segments with pleasant-
ness and eventfulness values. In previous studies, Fan
et al. conducted a study that annotated the perceived
pleasantness and eventfulness of a corpus of soundscape
recordings. Then, the authors use stepwise regression to
train two models to predict the perceived pleasantness
and eventfulness.

Given our mix formalism, we implement a minimum-
conflicts algorithm (Minton, Johnston, Philips, & Laird,
1992) that tests a series of possible solutions for finding
the best segment combinations within a given time.

Variables. At a decision point, the engine executes the
minimum conflicts algorithm to optimise the assignment
of a segment to a track. The engine observes the tar-
get specification values for pleasantness and eventfulness.
We therefore introduce variables specp, and spece for the
input specification values pleasantness and eventfulness,
respectively. Similarly, the mix generates a new set of
pleasantness and eventfulness values, and we introduce

variablesmeasuredp, andmeasurede, to capture these.We
adopt the predictive model outlined by Fan et al. (2016)
for generating the mixed pleasantness and eventfulness
values. Deciding on a mix now amounts to finding seg-
ments for each track at the decision point that minimises
the objective function.We choose a function based on the
Euclidean distance calculated by:

√
(measuredp − specp)2 + (measurede − spece)2 (1)

Introduction of Silence. The background tracks of a
mix always have sound occurring, whereas foreground
sounds tend to be intermittent depending on the sound-
scape. Therefore, we introduce a segment containing
silence as a possible alternative selection for foreground
type tracks. If a decision point chooses silence as the
most viable option from the selection of segments, then
the span of the silent region extends to the next deci-
sion point. Silence can be chosen at consecutive decision
points.

5.2. Segment selection

Minimum-conflicts is a local-search technique effective
for many optimisation problems with solutions densely
distributed throughout the state space. It has the property
of finding the best solution within the search space given
time constraints.

As is shown inAlgorithm 1, the algorithm is initialised
with a randommix, and outputs amix converging toward
an optimal combination of tracks. A track is selected at
random and assigned a segment that has the greatest
effect on minimising the objective function. This process
is repeated until a set number of iterations is reached.

5.3. Generating amix

The assignment step is triggered at regular intervals of
0.25 s, or whenever a change in the mix occurs (i.e. the
end-time of a segment), whichever is sooner. As shown
in Figure 2, a benefit of our approach for building a mix
at a decision point is allowing the definition of curves
for modulating the soundscape pleasantness and event-
fulness over time. An example of a simple dramatic arc
is this: a soundscape starts as pleasant and uneventful,
approaches unpleasant and highly eventful at the half-
way mark, then ends toward pleasant and moderately
eventful. This arc can be constructed.

6. Evaluation

The evaluation of the Audio Metaphor system here aims
to ascertain if there is a perceived difference, regarding
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input : maxSteps,number of steps before giving up,
currentMix, assignment of segments for
tracks

output: a solution mix

for i← 1 to maxSteps do
if currentMix fulfills specification then

return currentMix
end
track← a randomly chosen track without a
segment at the decision point
segment← the segment for a track retrieved
from a database search that minimises the
objective function (Equation 1)
set track segment in currentMix

end
return currentMix

Algorithm 1: Minimum-conflicts algorithm for select-
ing the combination of segments minimising the objec-
tive function.

Figure 2. A graph representing the curves for pleasantness and
eventfulness to modify the soundscape mix over time. The value
of those curves is referenced at the corresponding selection stage
to guide the decisions of the mixing engine.

semantics and emotion, between soundscape composi-
tions generated by our system, those created by a human
composer, and those randomly generated. Therefore, we
conduct listening experiments for perceived pleasant-
ness, eventfulness, and semantics, asking study partici-
pants to asses these soundscape compositions.

In this section, we outline our experiment. First, we
define our research question. We define the three con-
ditions used to generate the soundscape stimulus in our
experiment. We then detail the dataset generated from

these conditions. Next, we describe the instrumentation
used in the experiment setup. Thereafter, we outline the
questionnaire presented to participants and conclude by
describing the data analysis plan.

6.1. Research question

Wedesigned a system to generate a soundscape composi-
tion from a description with the goal that the soundscape
corresponds to an acoustic environment and a particular
emotion at a particular time. Therefore, we want to test
the system for the perceived semantic and affective prop-
erties of the output. Further, wewish to determine if there
is any difference in terms of perceived semantic and affec-
tive properties between soundscape compositions gener-
ated by our system, those created by a human composer,
and a randomly generated soundscape composition.

6.2. Conditions

A soundscape specification is a sentence describing an
acoustic environment, duration, and values for valence
and arousal. We use a set of ten (10) soundscape specifi-
cations in this study to create an equal number of sound-
scape compositions with a generative mixing engine,
a human soundscape composer, and a random mixing
generator.

Each generator has the following set of mixing
constraints:

• Only sound files from the specification can be used.
• Duration must be the length specified.
• Sound processing is constrained to segmenting a

sound file, fading segments in and out to prevent
clicks.

Condition 1: Machine Generated.Condition 1 includes
soundscape compositions generated by Audio Metaphor.
Audio Metaphor generates soundscape compositions
from a database of audio files given a description that
includes a text-based utterance, a desired duration, and
a specific value for pleasantness and eventfulness (see
Section 5).

Condition 2: Human Generated. Condition 2 includes
soundscape compositions generated by a human expert.
We give them the same specification of text-based utter-
ance, a desired duration, and a specific value for pleas-
antness and eventfulness as in Condition 1. For each
specification, the human expert has a database of audio
files returned by the semantic search process carried out
by Audio Metaphor – between 20 and 60 files depend-
ing on the specification. The experts used there own
judgement regarding the pleasantness and eventfulness
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Table 1. The list of soundscape utterances and accompany-
ing desired pleasantness and eventfulness of the generated
soundscape.

Sentence Pleasant Eventful

There are crows in the garbage low high
At the train station I hear churchbells low high
Quietly walking in the forest high low
I hear lambs in the dirt, and a horse high low
There is a tractor and grasshoppers high high
I hear birdsong and children are playing in the bush high high
There are bees buzzing in the city park low low
I hear barking in the meadow low low
There are bees buzzing in the city park mid mid
At the train station I hear churchbells mid mid

of particular audio files. A time limit of their discretion is
allocated for the completion of the task. Experts returned
their compositions no longer than 2 weeks after the task
was accepted.

Condition 3: RandomGenerated. Condition 3 includes
randomly generating soundscape compositions. The pro-
cedure is to create a background and foreground track for
each concept outlined in the utterance. This condition
accesses the same database of audio files segmented by
the BF classifier returned from Audio Metaphor. A con-
tinuous mix is made on each track by randomly select-
ing from all segments associated with a concept until
the given duration is reached. The random generation
method disregards eventfulness and pleasantness infor-
mation. Segments are sequenced end-to-end on each
track, with a crossfade amount set at 0.125 s.

6.3. Dataset

We use a set of thirty (30) generated soundscape compo-
sitions for the evaluation experiment. To facilitate study
participants’ comprehension of soundscape semantics
and emotionwhile not becoming fatigued by the listening
process, each soundscape composition has a duration of
15 s. To create this dataset, we use a set of ten (10) sound-
scape descriptions that include a descriptive sentence and
values for eventfulness and pleasantness (see Table 1).
The set of soundscape descriptions is given to human
experts, the AudioMetaphor system, and a system gener-
ates random soundscape compositions–resulting in three
alternatives for each utterance.

The soundscape compositions in our study are gen-
erated from a curated selection of field-recordings. We
use a dataset of 4085 audio files from the Freesound
Project (Freesound, 2012) that have a Creative Commons
License allowing for modification and reuse. A group of
soundscape experts curated the sound files from a larger
set, removing files that were of poor audio quality and
those that did notmatch the semantics of the accompany-
ing tags entered by Freesound users. Durations of sound

files range from a few seconds up to 10min. Following
the licencing agreement as outlined by the Freesound
Project, we make a list of attributions available from
our project website. We also make the corpus of curated
recordings availableat that site.1

To create the ten simple descriptive sentences, we anal-
yse tags Freesound users labelled sound files with in the
database. We examine the word frequency of tags on
recordings, then group the tags regarding the follow-
ing soundscape contexts: wilderness, urban, rural, and
marine. We then generate random samples of tags using
the probabilities associatedwith a tag occurrence. Finally,
we connect tags with any necessary parts of speech to
create a descriptive sentence. We constrain the number
of tags in each sentence to being between two and three
terms.

The remaining properties of the soundscape specifica-
tion include a value for the desired duration, and values
for the pleasantness and eventfulness. We set the time
limit for each soundscape composition to sixty seconds.
To explore the range of the capability of AudioMetaphor,
we set the pleasantness and eventfulness values at the
extremes of the affect grid, and in the middle of the grid.

A human composer receives a paper form of a spec-
ification with the pleasantness and eventfulness values
denoted on a two-dimensional affect grid denoting pleas-
antness and eventfulness. The Audio Metaphor system
receives the sentence, and pleasantness and eventfulness
values. The random generation system receives only the
sentence.

After receiving a completed soundscape composi-
tion from each condition, a fifteen-second interval is
extracted from the sound file centred at the middle of the
total duration. To prevent clicks, we apply a 0.01-second
fade-in and fade-out to the extracted region. The pro-
cessed region, soundscape specification and condition
are logged.

6.4. Instrumentation

In the evaluation of Audio Metaphor, we conduct three
experiments. The first experiment aims to test if there is a
significant difference between the perceived pleasantness
of soundscape compositions generated from the three
conditions. The second experiment asks a similar ques-
tion in terms of perceived eventfulness. The last experi-
ment asks participants about the correlation between the
utterance and the sounds heard, and if the soundscape
composition is believable.

We use Figure Eight (Morris, McDuff, & Calvo, 2014),
a crowdsourcing company that lets users access an

1 www.audiometaphor.ca/
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online workforce of millions of individuals to label data,
to recruit participants. The research outlined by Fan,
Thorogood, and Pasquier (2017) using a similar listening
study has used this crowdsourcing method, with partic-
ipants accessing the survey using a standard computer
system and web-browser. To the best of our abilities, we
avoid the limitations of crowdsourcing by marking the
necessary precautions in the tutorial, training partici-
pants before the study, inserting 8 test questions to ensure
the quality of results, and use outlier detection techniques
in the post-processing stage.

Before commencing the study, we provide participants
with information about the purpose of the experiment
and the properties of a soundscape. In the tutorial, a
participant is asked to use stereo headphones to hear
the audio. Although the sounds in our study are best
described as ambient, we ask that participants adjust the
volume level of their system so that the loudest record-
ing in the experiment dataset is at a comfortable listen-
ing level. The participant is requested to follow a short
tutorial to be familiar with both the study interface and
listening to soundscape compositions.

During the study, a participant is presented with the
set of three soundscape compositions for a particular
specification: one generated byAudioMetaphor, one gen-
erated by a human, and one randomly generated. The
soundscape compositions are presented in a randomised
order, and can be listened to in any order and listened to
repeatedly. After listening to a set of soundscape compo-
sitions, a participant responds to a 10-point Likert-scale
question for each condition.

The study interface has a simple audio player with
start, stop and listen buttons. They can listen to the audio
repeatedly. They’re presented with a set of Likert-scale
questions. Upon listening to the soundscape composi-
tions and entering their response, the system logs the data
and presents the next sample.

6.5. Participants

To be recruited for this study, participants need to be
able to use a computer and listen to audio with head-
phones. They must be able to read English, as text-based
utterances are presented in this language. People with
Figure Eight accounts can view and decide if they want
to participate in the survey for payment.

Before entering the actual study, participants are pre-
sented with a quiz, where five gold standard questions
are provided. For example, in the first experiment that
tests if there is a significant difference between the per-
ceived pleasantness of soundscape compositions gener-
ated from the three conditions (Audio Metaphor, human
composed, and randomly generated), we provide audio

Table 2. Geographic distribution of study participants.

Study Venezuela Egypt US other

Pleasantness 33% 13% 5% 49%
Eventfulness 30% 10% 10% 50%
Semantics 30% 8% 8% 54%

recordings that are easily distinguishable regarding the
perceived pleasantness under these three conditions.
These audio recordings are carefully selected by experts.
For the experiments testing the perceived eventfulness
and semantics, we also set gold standard questions. To
ensure that a participant has a firm understanding of the
tasks, we exclude participants who score less than 75% on
the quiz questions.

Each study takes a total time of 22.5min to complete.
This time includes listening to 7.5min of audio with
roughly 5min for answering the questions, and 10min
for listening and reading in the tutorial stage. A partici-
pant can leave the study at any time without penalty.

There were a total of 418 participants for the pleasant-
ness study, 474 participants for the eventfulness study and
633 participants for the semantics study. The geographic
distribution of the participants is highlighted in Table 2.

6.6. Questionnaire

We run the study in three parts and design a separate 10-
point Likert-scale questionnaire for each.

Emotion characteristics of the soundscape composition.
The following three questions are designed to determine
if a significant difference exists between the perceived
emotion of the soundscape compositions generated by
the 3 conditions.

The first question asks a participant to respond to
the perceived pleasantness of the soundscape composi-
tion. After listening to a set of 3 recordings, a participant
is asked to rate the perceived pleasantness of each. We
place the tag unpleasant on one extreme of the scale and
pleasant on the other.

Similar to the previous question regarding pleasant-
ness, eventfulness is a term derived from the soundscape
literature, used by people to describe the amount of per-
ceived activity in a soundscape composition. After listen-
ing to a set of 3 recordings, a participant is asked to rate
the eventfulness of each. We place the tag uneventful on
one extreme of the scale and eventful on the other.

Semantic characteristics of the soundscape composi-
tions. The next two questions seek to determine if the
soundscape composition represents the one described in
the text and if it sounds believable.

After listening to a set of 3 recordings, a participant is
asked to rate their level of agreement with the statement
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that a particular soundscape composition is believable.
We place the tag strongly agree on one extreme of the scale
and strongly disagree on the other.

The final question asks that a participant listen to the
set of 3 recordings, and then rate their level of agreement
with the statement that a particular soundscape compo-
sition represents the one described in the sentence. We
place the tag strongly agree on one extreme of the scale
and strongly disagree on the other.

6.7. Data analysis plan

We analyse psychometric data obtained from the study
by applying standard statistical methods. Regarding our
research questions, we wish to know whether machine-
generated soundscape compositions are perceived as
different from the human-generated and the random-
generated. We conduct separate statistical tests for each
of the properties of eventfulness, pleasantness, believabil-
ity, and if the soundscape composition is representative
of the utterance. For each of these properties, we test for
rejection of the null hypothesis that there is no signifi-
cant difference between the average ratings for the three
conditions.

7. Results and discussion

We compute the error between the perceived and
intended pleasantness and eventfulness. For each of the
tests, an ANOVA shows there is significant difference
(p< .05) between the average ratings for the three con-
ditions. We therefore performed a Tukey post hoc test in
each case to check for the significant differences between
the results for each pair of conditions. A summary of
these results is demonstrated in Tables 3 and 4.

Table 3. Mean and standard deviation results from an analysis
of variance between the perceived affect of soundscapes gener-
ated by the three conditions. A smaller mean value demonstrates
a greater accuracy of the soundscape to the specification.

Pleasantness Eventfulness

Machine 2.160, 2.181 3.079, 2.377
Human 2.680, 2.545 3.205,2.573
Random 4.696, 2.647 3.855, 2.797

Table 4. Mean and standard deviation results from an analysis of
variance between the semantic properties of soundscapes gener-
ated by the three conditions. A smaller mean value demonstrates
a greater agreement with the semantic property.

Believable Represents

Machine 2.727, 2.569 3.671, 3.217
Human 2.366, 2.569 3.924, 3.217
Random 3.234, 2.695 5.460, 3.568

7.1. Pleasantness

An ANOVA was conducted to compare the mean differ-
ence between ratings and target values of the perceived
pleasantness of a soundscape composition. It shows that
the effect of mixing engine type on the perceived pleas-
antness of a soundscape composition at the p< .05 level
for the three conditions machine, human, and random
was significant F(2, 899) = 88.5656, p=0.000. Post hoc
comparisons using the Tukey HSD test indicated that
the mean score for the Machine condition (M=2.160,
SD = 2.181), the Human condition (M=2.68, SD =
2.545) and the Random condition (M=4.696, SD =
2.647) were all significantly different.

7.2. Eventfulness

An ANOVA was also used to compare the mean differ-
ence between ratings and target values of the perceived
eventfulness of a soundscape composition. It shows that
the effect of mixing engine type on the perceived event-
fulness of a soundscape composition at the p< .05 level
for the three conditions machine, human, and random
was significant F(2, 641) = 5.534, p=0.004. Post hoc
comparisons using the Tukey HSD test indicated that
the mean score for the Machine condition (M=3.079,
SD = 2.377) was not significantly different than the
Human condition (M = 3.205, SD = 2.573). However,
the Random condition (M=3.855, SD = 2.797) was sig-
nificantly different than the Machine condition and the
Human condition.

7.3. Believable

Similarly, we conducted an ANOVA to compare the
mean difference between ratings and target values of
the perceived believability of a soundscape composi-
tion. It shows that the effect of mixing engine type on
the perceived believability of a soundscape composition
at the p< .05 level for the three conditions machine,
human, and random was significant F(2, 638) = 6.6225,
p=0.001. Post hoc comparisons using the Tukey HSD
test indicated that the mean score for the Machine con-
dition (M=2.727, SD = 2.569) was not significantly
different than the Human condition (M=2.366, SD =
2.569). However, the Random condition (M=3.234,
SD = 2.695) was significantly different than theMachine
condition and the Human condition.

7.4. Representation

An ANOVA test evaluating the mean difference between
ratings and target values on how closely a soundscape
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composition represented an utterance reveals the effect
of mixing engine type on the representative level of a
soundscape composition at the p< .05 level for the three
conditions machine, human, and random was signifi-
cantF(2, 638) = 17.473, p=0.000. Post hoc comparisons
using the Tukey HSD test indicated that the mean score
for the Machine condition (M=3.671, SD = 3.217) was
not significantly different than the Human condition
(M=3.924, SD = 3.217). However, the Random condi-
tion (M=5.460, SD = 3.568) was significantly different
than the Machine condition and the Human condition.

7.5. Discussion

Taken together, the results demonstrate that responses
show variability between soundscapes generated by the
machine, human experts, and randomly concerning the
properties of pleasantness, eventfulness, believability,
and representation.Moreover, a post-hoc analysis reveals
that the Audio Metaphor system is human-competitive.
In all four of the properties we test, Audio Metaphor
always performs better than the baseline randomly gen-
erated soundscape compositions. Furthermore, Audio
Metphor does at least as well as a human composer in
representing the soundscape specification in terms of
pleasantness, eventfulness, believability, and semantics.
Examples of the systemoutputs are available at the project
site.2

8. Conclusion

Sound designers have many tasks when generating
soundscape compositions. Some of these tasks, such as
sound file search/retrieval and segmentation are repet-
itive and time-consuming. The mixing task provides
other challenges when working in generative contexts
such as video games and virtual reality. Having a com-
puter automate these tasks in a sound design workflow
is an advantage. In answering the question of whether a
machine can autonomously generate soundscape com-
positions, we have described a system for generating
soundscape compositions. Our system utilises acoustic
features, semantic information, and emotional character-
istics to produce, from a database of existing sound files,
soundscape compositions specific to an utterance.

To position our research, we surveyed the state of the
art in soundscape generation systems, identifying the sig-
nificant characteristics of these types of systems. These
systems aim at automating one or more sound design
tasks. Our research addresses the problem of automating

2 https://digitalmedia.ok.ubc.ca/projects/aume/mixingExamples/

sound file search, retrieval, segmentation, and arrange-
ment for sound design production using the semantic
and sentiment criteria.

We describe the Audio Metaphor system that auto-
mates the generation of a soundscape composition
from an utterance and returns a soundscape repre-
senting semantics and emotion. Further, we describe a
method to segment and classify sound files based on
background, foreground, pleasantness, and eventfulness
classes. Lastly, we detail a mixing engine that generates
a layered soundscape composition. Through a crowd-
sourcing listening experiment, we evaluated the Audio
Metaphor system for the properties of perceived pleas-
antness and eventfulness, the correlation between what
is heard in the soundscape and read in the utterance, and
the believability of the artificial soundscape. The results
indicate that Audio Metaphor is human-competitive in
all the properties under analysis.

Sound design is a creative process, and there are many
nuances of the processes that must be taken into account
whenmodelling for a generative system.Our research has
identified and addressed the essential elements of sound-
scape generation systems, paying particular attention to
details such as the perception of background/foreground
and pleasantness/eventfulness. However, there is still
much to explore in this domain. We have demonstrated
how non-trivial tasks, traditionally, undertaken by sound
designers, can be automated in a computational system.
Soundscape and sound design literature have been the
point of departure in recognising and modelling these
tasks. Building on our research, we see further integra-
tion of human creative practice into autonomous systems
used in sound based arts. As demonstrated here, one
approach to this goal is to align knowledge from human
perception, cultural factors, and situated sound design
practice for building intelligent systems.
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