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ABSTRACT
Affect estimation consists of building a predictive model of the
perceived affect given stimuli. In this study, we are looking at the
perceived affect in full-body motion capture data of various move-
ments. There are two parts to this study. In the first part, we conduct
groundtruthing on affective labels of motion capture sequences by
hosting a survey on a crowdsourcing platform where participants
from all over the world ranked the relative valence and arousal of
one motion capture sequences to another. In the second part, we
present our experiments with training a machine learning model
for pairwise ranking of motion capture data using RankNet. Our
analysis shows a reasonable strength in the inter-rater agreement
between the participants. The evaluation of the RankNet demon-
strates that it can learn to rank the motion capture data, with higher
confidence in the arousal dimension compared to the valence di-
mension.
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1 INTRODUCTION
In the recent growing interest of developing technology to rec-
ognize people’s affective states [15], more and more studies have
shown that body expressions are effective in conveying emotion [3,
40]. Combined with the increase in the volume of sheer amounts
of data, there is an increasing demand for the development of af-
fect recognition systems which in turn has potential impacts in
clinical and entertainment contexts. Thus, we developed an affect
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ranking system using the valence-arousal (VA) model of human
emotion, and used full body motion capture data as input, which
does not contain any information regarding facial expressions or
voice. When considering the three aspects of movement, functional
(the task of the movement, such as picking up a cup), executional
(the pattern of movement, such as using the left or right hand to
pick up the cup), and expressive dimensions (the emotions behind
the movement) [1], we are essentially measuring the expressive
dimension of full body movements.

The ground-truthing experiment was conducted using a ranking
system in which we ask participants to rank the relative valence and
arousal for different pairs of movements. This results in a complete
relative ranking of the movements. The machine learning models
are trained on this ranking.

The contribution of this paper is a first step in the processing
and affect estimation of a large amount of motion capture data,
leading to future off-line and on-line applications. The main off-
line applications involve database labelling, which is especially
useful for the development of movement databases [32]. A valid
and reliable ranking model for movement expressivity would allow
us to automatically label existing motion capture data according to
the valence-arousal model. In on-line scenarios, such a model could
be used in interactive arts or therapy contexts. Such a system can
also be used in generating movement with user-specified valence
and arousal [1]. Our goal is therefore to estimate affect expressed
by movement using the VA model, specifically a meaningful rank
on the VA spectrum relative to the other data.

For the rest of the paper, we start by outlining the related work
in affect classification. After that, we describe the data and the pro-
cessing used in our study, followed by experimental methods, par-
ticipants, results, and analysis for each iteration separately. Lastly,
we end with concluding remarks and future work.

2 PREVIOUS WORK
2.1 Affect Estimation
In affect estimation, considerations that come into play include the
intended emotion of the mover, and the perceived emotion of the
mover [24, 29]. Malandrakis et al. [27] have shown that there can be
a difference even in award-winning movies in the intended and ex-
perienced emotions. How well the intended emotions are portrayed
plays an important role in the movies. With their experiment, they
used award-winning films and expert annotators to narrow the gap
between the intended and expressed emotions. In our experiment,
we are able to direct the movers, so we assume the intended affect
is identical to the perceived affect.
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In the field of affective computing, facial expressions are often
examined in the determination of affective states [13, 19]. However,
Inderbitzin et al. [21] have shown that it is possible to perceive VA
states from movement even on faceless generated characters, re-
gardless of viewing angle. They have even identified some canonical
parameters that control the expression of emotions in locomotive
behavior, such as upright upper body postures being perceived as
more emotionally positive and vice-versa for forward leaning pos-
tures. Other documented sources also suggest that humans convey
emotions through body movement and postures [10, 11]. Analy-
sis of head pose and movement is able to achieve 71.2% accuracy
in recognizing depression [2]. Furthermore, studies in movement
have shown certain features in expressive movement, such as por-
trayal of strength, can be linked to specific emotions, such as fear
or anger [11, 41].

In affect estimation based on body movement, there have been
many studies in using dance with mixed results ranging from barely
above random chance to close to human levels of accuracy [8, 22, 33].
Kapur et al. developed classifiers that achieved comparable accuracy
as observers using dance movements [23]. However, as Kleinsmith
points out, dance is often exaggerated to convey affect [24].

Looking at non-dance-based systems, Castellano et al. have at-
tempted to infer emotional states using video analysis onmovement
qualities such as amplitude, speed, and fluidity. Their system was
able to discriminate between “high” and “low” arousal emotions
and “positive” and “negative” [9]. Pollick et al. conducted a study
to compare the performance of their automatic system with human
recognition. In their study, they used 3D positioning measurements
of the arm in knocking, lifting, and waving motions with two affec-
tive states, neutral and angry. They concluded that the automatic
system was able to discriminate between the two states more con-
sistently than humans [34]. Samadani et al. developed a system
for both full body as well as hand-arm improvisiation movements
to discriminate between 4 affective states using HMMs with good
results [38].

Nicolau et al. developed a system for estimation of affect modal-
ities in the Valence-Arousal space using multi-modal inputs (based
on facial expression, shoulder gesture, and audio cues). Their ap-
proach claims to be unique in that it performs continuous affect
prediction according to the valence-arousal model. They compare
both Support Vector Machines (SVM) and bi-directional Long-Short-
Term Memory Neural Networks (BLSTM-NN), concluding that
BLSTM-NN performs better [31]. However, we have decided not to
use BLSTM-NN due to the fact that they are using different sets of
input data (extracting data from video and audio as well as mainly
focusing on facial expressions); in our case we are using motion
capture data with no facial expressions. Furthermore, the lack of
a benchmark and standard skeleton markers due to the use of dif-
ferent datasets and body markers in the aforementioned studies
makes it difficult to compare and evaluate different systems.

2.2 Ranking and Rating
Most of the previous research have used a rating system. How-
ever, Yannakakis et al. point out some limitations to using ratings
in 2015 [42]. Firstly, inter-personal differences including cultural
background and experiences can lead to different perceptions of
affects. What appears to be happy to one person might appear neu-
tral to others. Similarly, Baveye et al. in 2014 [4] point out that
using ratings require the participant to understand the full range

of the valence and arousal scale of the data, which is usually not
feasible. Secondly, Yannakakis et al. argue that using adjectives
such as “moderately” and “extremely” are not numbers, and thus
any method that treats them as numbers such as average values
or t-tests are fundamentally flawed. This also ties in with the third
issue they point out that ratings are not always linear.

Therefore, we have chosen to use a ranking system for classifica-
tion. Ranking approaches are easier in terms of cognitive load and
have a higher inter-rater agreement [4]. Yannakakis et al. [42] also
claim that using rankings eliminates the cultural and subjective
biases in the annotation. However, a disadvantage to using rankings
is that the ranks do not indicate the distance between them. For
example, we know video A has higher valence than video B, but
the amount by which it is higher is not clear.

There are three approaches to the learning to rank: pointwise,
pairwise, and listwise [25]. In the pointwise approach, the model
predicts a score for a single input item. In the pairwise approach,
the model is given two input items, and ranks them accordingly.
In the listwise approach, a set of items is given to the model, in
which it outputs a ranked list of the input items. As in a similar
experiment by Fan et al. [12], we will be going with a pairwise
approach, as it produced the best results.

There are a number of systems used in the literature for pairwise
ranking, including SortNet [36], RankNet [7], RankSVM [20], and
RankBoost [16]. We use RankNet as it is an efficient model for
working for high-dimensional motion capture data.

2.3 Model of Affect
For our study, we will be using Russell’s model of affect [37]. A
potential drawback of Russell’s model is that some researchers
such as Fontaine et al. [14] are starting to believe more dimen-
sions are needed to describe the emotional space, such as the PAD
(Pleasure-Arousal-Dominance) model put forth by Mehrabian et
al. [28], which includes the addition of the dominance dimension.
Dominance refers to whether an affect is controlling, submissive,
or otherwise influenced by something else. For example, if a person
is subjecting themselves to the command of another person or feel
pressured or otherwise controlled by another entity, this would
be submissive on the dominance dimension. We did not include
the dominance dimension in our experiments because all of our
movement are performed individually without another body or
objects in the scene. Thus the concept of dominance does not make
sense in the context of our motion capture data.

Another potential drawback is that Schacter et al. [39] claimed
that the physiological reactions contribute to the emotional expe-
rience by facilitating a cognitive recognition of a physiologically
stimulating event, which then defines the emotional experience.
The emotion is the result of a combination of the cognition of a
physiological event and the participants’ reception of adrenaline.
For our studies, we do not address nor do we have control over
either the actors’ or viewers’ physiological states. With our actors,
we are assuming that they are able to act the specified emotional
state despite their internal physiological states. With the viewers,
we are assuming their physiological states do not drastically affect
their perception of the movements while watching the animation
as it is a low-stimulus activity.

Other than dominance, there is not yet a well-established set of
dimensions in addition to valence and arousal that are considered
necessary in order to describe affect. Determining such a set of
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Figure 1: Valence and arousal combinations

standards is outside the scope of this study. Therefore, we will be
using just valence and arousal as the basis for our model of affect,
similar to other previously cited studies. However, we will keep in
mind that as research in the dimensions of affect progresses, our
experiments will potentially need to be replicated or our models
tweaked to account for additional dimensions or new models of
affect. To our knowledge, automatic systems in affect estimation
using motion capture data has not yet been attempted in the context
of a dimensional model of affect.

3 DATASET
3.1 Motion Capture Data
As part of the efforts of the MovingStories project, an open source
MoCap database1 [32] has been created. For this study, we are us-
ing some of the recordings in this database that have been labelled
according to the circumplex model of affect [37]. The data are in
the form of MoCap bvh files and accessible in the MoCap data-
base2. The key point for this experiment is that only the skeletal
information is retained in the end. There are no facial expressions
and nothing that explicitly indicate gender, body type, or ethnicity.
Three professional actors, one male and two female, performed in
the data collection stage. Two of the actors performed 9 different
types of movements: walking in a figure eight pattern, hugging,
static improvisation, free improvisation, sitting down, pointing
while sitting, walking with sharp turns, improvisation while facing
another actor, and lying down. Improvisation refers to a movement
that is at the discretion of the mover. In other words, they are given
the direction of acting in a certain affect, but are free to carry out
whatever movement they wish that they believe would illustrate
that affect. The difference between free and static improvisation is
that in static improvisation the only additional restriction is that
they must remain standing in the same spot. The third mover per-
formed only the two walking movements. There are 9 takes for
each movement, corresponding to the 9 different possible VA com-
binations shown in Figure 1, covering more emotional states than
similar existing datasets (e.g. 4 emotions in the library presented by
Ma et al. [26]). Existing labels were created by dividing the Russell’s
model [37] into low, neutral, and high along both the valence and
arousal axis. Using this model, anger would be classified as low on
the valence axis but high on the arousal axis.

1http://moda.movingstories.ca/
2http://moda.movingstories.ca/projects/29-affective-motion-graph

Figure 2: MoCap skeleton

The data were recorded with a Vicon motion capture system3

and mapped to a skeleton representation with 30 joints as shown in
Figure 2. Eighteen of the motion capture files were recorded at 60
frames-per-second, while the rest were recorded at 120 frames-per-
second. Therefore, we downsample 120fps files to 60fps. Sequences
vary in length from 1000 frames to 8000 frames. Each frame contains
the rotations for each of the joints in the Euler representation, as
well as the spatial location and orientation of the skeleton root.

3.2 Pre-Processing
We convert the rotational data from Euler representation to the
exponential maps [18] as suggested in the literature for training
neural networks on motion capture data. After removing empty
dimensions as well as orientation and translation of the skeleton’s
root to eliminate bias due to geometrical translation, we are left
with a 46-dimensional vector per frame. We further concatenate
a window of consecutive frames into one feature vector to flatten
the time dimension. We experiment with window sizes of 1, 3, and
12 frames. The intent behind using these window sizes is to test
a variety of window sizes and determine if there is a trend in the
performance of the model relative to the window size. However,
we acknowledge that at these window sizes, the duration captured
is very short. It is closer to a snapshot of the movement rather
than fully capturing the temporal aspect of the movement. Based
on previous works, it is not clear at this time what sort of high-
level features would be useful in recognizing affect in full-body
motion capture data that would persist over a long period of time.
Depending on the models, long window periods can also signif-
icantly increase processing time, which would be detrimental to
most practical applications. Hence we test using small window
sizes. Converting to real time using the frame rates, these window
sizes account for 0.1 second or less of the movements. Therefore,
the window sizes are not realistic to the perception or reflex of
humans. From the perspectives of a machine, these window sizes
are enough to see a trend in the performance of the models. Fur-
thermore, building systems using smaller window sizes will also
be more advantageous in any application that relies on real-time
affect estimation in order to give a prediction as fast as possible.

4 DATA COLLECTION
We conduct our survey on the CrowdFlower platform. Full doc-
umentation for this platform can be found at the CrowdFlower

3https://www.vicon.com/

http://moda.movingstories.ca/
http://moda.movingstories.ca/projects/29-affective-motion-graph
https://www.vicon.com/
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website4. We chose this platform due to a similar successful study
in affective rankings. Baveye et al. [5] conducted a study where
9800 videos were ranked on CrowdFlower in terms of valence and
arousal. Their goal was to provide rankings for the affective video
database LIRIS-ACCEDE. We obviously cannot use this database as
our videos are motion capture data, but as our goals are similar, we
have chosen to use the same experimental protocol that they have.

The CrowdFlower platform was chosen because it reaches sev-
eral crowdsourcing services, which also allows for a good distribu-
tion of demographics [4]. However, the number of labor channels
have been reduced in the last few years. It is no longer disclosed by
CrowdFlowerwhere theymay distribute their tasks nor is it possible
to choose specific channels. The advantages of using crowdsourcing
platforms like CrowdFlower include supported infrastructure in
both the survey design and payment. For example, CrowdFlower
offers templates for a variety of surveys that are all fast and easy
to implement. This reduces the potential problems that may come
up from the researchers having to host their own online survey
such as website or server issues. Another concern with gather-
ing large number of responses is the payment. Most people would
not want to answer a long survey for free. Using a well-known
crowdsourcing platform also ensures that financial transactions are
trustworthy and transparent. We choose CrowdFlower also because
it is possible to limit the survey to users that have shown to give
quality responses on other studies conducted on CrowdFlower.

For the CrowdFlower platform, each worker has a discrete trust
level associated with his or her account ranking from level 1 to
level 3. Participants can raise their trust level by completing jobs
on the CrowdFlower platform successfully and without failing. A
participant fails a study if they ever drop below a certain level of
accuracy (70% by default) on pre-defined test questions. However,
the exact algorithms for determining user trust levels are internal
to CrowdFlower and not visible to us. We are only able to spec-
ify the trust level to which our survey is available. Every job on
CrowdFlower will have a pre-survey quiz to ensure participants
understand the task. Only participants that achieve at least 70% will
be allowed to participate in the survey. Furthermore, throughout
the survey, there will be a random test question on every survey
page to ensure the participant stays focused throughout. Partici-
pants gain trust levels by passing these quizzes and test questions
and consequently lose trust levels by failing. If they feel a particular
test or survey question was unfair, they are able to challenge it
and provide a written response that we can monitor in real time
and change the questions accordingly while the survey is still live
for other participants. We have chosen to limit our survey to only
the highest trust level participants at level 3. This is to ensure as
much as possible that our responses come from participants who
are experienced with the platform and have shown themselves to
be trustworthy (ie. do not click through surveys randomly) from
past studies on CrowdFlower.

5 METHODS
5.1 Participants
The participants of the survey were users of the CrowdFlower plat-
form from all over the world, including but not limited to countries
such as USA, Brazil, Ukraine, Poland, Turkey, Russia, France, Egypt,
Mexico, and India. However, as many users choose not to disclose

4 https://success.crowdflower.com/hc/en-us

their nationality, we do not have the complete statistics on the
locations of the participants. All participants are completely anony-
mous and only trackable in our experiment via worker ID. The
participants are paid $0.02 CDN per comparison once they pass the
pre-survey quiz. If a participant drops below 70% accuracy on test
questions, they will be kicked from the survey, but still be paid for
the comparisons they have done so far. Their responses up to that
point will be used. Lastly, participants are free to quit the survey
at any time. However, they will only be paid for each page of com-
parisons for which they have clicked "Submit". After the survey,
participants have the option of providing feedback in the clarity
of the instructions, easiness of the task, compensation, and overall
experience.

There was a total of 1263 trusted annotators from 65 countries,
with the majority of the workers coming from Venezuela (24.5%),
Brazil (6.7%), Serbia (6.6%), Turkey (6.0%), Russia (5.6%), and Bosnia
(5.1%). The trusted annotators had an accuracy of 93.6% on the quiz
and the test questions throughout the survey. There were a total of
103 untrusted annotators who were kicked from the survey and 109
people who failed the pre-survey quiz, and thus did not participate
in the study. There were a total of 19848 submitted comparisons by
trusted annotators. Annotators spent an average of 15 seconds per
comparison. This is a reasonable amount of time as the animation
clips are being played side by side simultaneously and are 10 to 25
seconds long.

5.2 Procedure
Similar to Baveye et al. [5], we are using a quick-sort algorithm
to rank our motion capture animation clips. The reason for this is
to cut down the number of comparisons needed to significantly
reduce the cost. We have 9 takes for each movement for a total of
181 motion capture clips. Surveying participants on every possible
pairwise combination would result in N (N −1)/2 comparisons. The
idea behind the quick-sort algorithm is that at the first iteration,
a specific MoCap is chosen as the pivot. Every other MoCap is
compared to the pivot element, creating two subgroups. The as-
sumption is that everything in the subgroup that was considered
to have a lower affect than the pivot is also lower in affect than
everything in the subgroup higher in affect than the pivot. How-
ever, we never compared MoCap from the two subgroups directly.
Everything was only compared with the pivot. Then two pivots are
chosen within the subgroup in the next iteration. Everything in
the first subgroup is then compared with the first subgroup pivot,
and vice-versa for the second pivot. This results in an average of
O(nloдn) comparisons rather than the full N (N − 1)/2 for every
possible pair-wise comparison. We continue dividing until the size
of every subgroup is no more than 5-10. We treat this last subgroup
size as having equal affect. We stopped at this subgroup size be-
cause we have many improvisation movements that appear to be
difficult for people to distinguish a relative rank. Many comparisons
at this stage were decided with 3:2 votes, no better than random.
We ended up using 9 pivots for valence and 8 pivots for arousal.
Using this method, we paid $346.55, saving about $2800-$3000 for
this experiment.

The survey begins with an explanation of the concept of valence
and arousal with accompanying examples of emotions on both
dimensions. The scale and accompanying example for valence is
shown in Figure 3. Likewise, the example for arousal is shown in
Figure 4. The overlapping terms are to provide additional examples

https://success.crowdflower.com/hc/en-us
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Figure 3: Valence scale example

Figure 4: Arousal scale example

of affects that are considered to be low or high valence and arousal.
Due to space constraints they were placed on different lines as to
maintain a clear distinction of the low VA examples and the high
VA examples. The characters in the images are from the SAM (Self-
Assessment Manikin) scale [6], a popular set of standard images
to convey the spectrum of affect used in research. Even though
this is a ranking experiment and not a rating experiment, these
images were chosen in addition to the adjectives shown to help the
particpant understand the concept of affect.

The participant then takes the pre-survey quiz to ensure they
understand the concepts. Animations chosen for the quiz are obvi-
ous examples of difference in valence or arousal in the sense that
they were extreme comparisons such as high valence high arousal
compared with low valence low arousal. An explanation is provided
for each question in case the participant picks the wrong answer.
The animation itself shows both motion captures simultaneously.
The particpant is able to zoom in or out and pan around the scene
as they wish to explore the 3D nature of the movement. An example
of the interface is shown in Figure 5.

The animation clips used range in length from about 10 to 25
seconds of three different professional actors as described in Sec-
tion 3.1. Each animation shows a mover performing one of our
recorded movements mentioned in Section 3.1. There are 181 dif-
ferent motion capture clips. We collect a total of 5 responses for
each comparison. Similar to Baveye et al. [5], we choose an odd
number of comparisons so that each pair is guaranteed to have a
distinction as to which has the higher affect. However, we choose
5 comparisons as opposed to the 3 comparisons from Baveye to
reduce the likelihood of pairs getting close votes by chance or pairs
getting ranked in the wrong order. A pair can be ranked incorrectly
if two people happened to not pay attention on a particular question.
With 5 comparisons, three people need to be not paying attention
for a pair to be ranked incorrectly. All of the above procedure is
performed twice, once for valence and once for arousal.

Table 1: Distribution of ranks for the 181 motion capture se-
quences

Arousal
180 0 0 1 3 6 21
150 0 1 1 10 9 9
120 0 4 6 11 8 1 Valence

90 0 5 16 4 5 0
60 4 16 6 2 2 0
30 26 4 0 0 0 0

Ranks 30 60 90 120 150 180

6 EXPERIMENT AND RESULTS
6.1 Inter-annotator Reliability
For the ranking experiment, we first look at the inter-annotator re-
liability. Unreliable responses are filtered by the trust level settings,
pre-survey quiz, and random test questions. In the experiment of
Baveye et al. [5], they collected 3 responses for each comparison and
they measured Inter-annotator reliability using percent agreement,
Krippendorff’s alpha, Fleiss’ kappa, and Randolph’s kappa. We con-
duct the same metrics except Fleiss’ kappa in our experiment as a
comparison. The results are presented in Table 2. Krippendorff’s
alpha is a flexible metric for measuring inter-annotator reliability
in that it allows for comparions being made by any number of
participants and missing data. Randolph’s kappa is an alternative
to Fleiss’ kappa, allowing for more flexibility in the distribution of
responses [35]. We did not include Fleiss’ kappa because it assumes
there will be a certain number of responses for each category. Thus
we felt Fless’ kappa was not suitable for our experiment.

Similar to Baveye et al., our reliability results indicate that agree-
ment is better than what would have been expected by chance.
The agreement from the experiment of Baveye et al. were similar
to Malandrakis et al. [27] and Mohammad et al. [30]. Our percent
agreement Krippendorff’s alpha, and Randolph’s kappa were found
to be lower than the experiment by Baveye et al., about 5% percent
agreement and 0.05 in both Krippendorf’s alpha and Randolph’s
kappa. This suggests it is harder to rank the valence and arousal
of motion capture sequences than videos, which is not surprising.
Videos contain facial expressions and sound. In the case of the
LIRIS-ACCEDE database presented by Baveye et al., the videos are
excerpts extracted frommovies. Agreement in participant responses
may be in part due to recognition of those movies, in which case
the participants have the context of the entire movie from which to
draw their sense of perceived affect. For example, if all participants
recognize the video as an excerpt from a happy movie, they would
perhaps be more likely to rank it as higher valence than an excerpt
from a sad movie, even if the excerpts might be similar in affect.

In Table 1 we present a distribution of the rankings. As an exam-
ple, the cell in the bottom left illustrates the number of sequences
with a rank of between 0 and 30. The interval size of 30 was cho-
sen to evenly divide all the motion capture clips into sufficient
bucket sizes in order to see an overall pattern or trend in the dis-
tribution. The sparseness of the top left and bottom right of the
graph indicates that there were little to no motion captures that
were ranked as either high valence and low arousal or low valence
and high arousal. The rankings are concentrated along the y = x
line, indicating that valence rises with arousal. This suggests that
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Figure 5: Screenshot of video in survey

Valence Arousal
Percent agreement 80.9% 81.2%
Krippendorff’s alpha 0.096 0.157
Randolph’s kappa 0.370 0.419
Table 2: Inter-annotator reliability

either it is difficult for the actors to portray valence and arousal
independently through motion capture, or people in general have
difficulty perceiving valence and arousal independently.

6.2 Learning to Rank Method
We use RankNet [7] to train a model to rank motion capture seg-
ments based on their valence and arousal levels, that match the rank-
ings provided by the survey. RankNet is a pairwise rank-learning
model that consists of a neural-network and a probabilistic loss-
function that aims at minimizing the number of rankings in the
wrong order. It can be trained using stochastic gradient descent.

6.2.1 RankNet. Burges et al. [7] proposed a probabilistic cost
for training systems to learn ranking functions using pairs of train-
ing examples. From the training examples they attempt to learn
a ranking function that does not map to a particular rank value.
For example, if A is ranked higher than B, the system just needs
to be able to determine that A is ranked higher, but it does not
assign a value to the rank of A or B when learning the training
samples. Burges et al. then chose to implement their probabilistic
cost function in a neural network. The cost function is a function
of the difference of the ranking outputs of two consecutive train-
ing samples, ie. what the system thinks is the difference in ranks
between two samples versus the actual difference in ranks. In the

case of consecutive samples, the true difference in ranks would al-
ways be 1. A forward propagation is performed on the first sample,
storing the activation of each node in the network and the gradient
value. Then the forward propagation is performed on the second
sample, again storing the activation and the gradient. The cost then
is the difference between the gradients of the two samples. Through
learning to minimize the difference of the gradient, RankNet models
the training samples in a monotonically increasing order.

6.2.2 Performance Analysis. We evaluate the ranking perfor-
mance of RankNet using the Goodman-Kruskal gamma [17]. The
Goodman-Kruskal gamma is a measure of rank correlation between
two variables, the ground truth and the predicted ranks in our case,
and is identified by G as follows:

G =
(Ns − Nd )

Ns + Nd
(1)

where Ns represents the number of cases that are ranked in the
same order on both variables, and Nd represents the number of
cases that are ranked in the reverse order. This measure ignores
ties. In our case, we did not have any ties. A G close to 1 shows
strong agreement in rankings between the two variables, while aG
close to -1 shows a strong disagreement in the rankings. A G close
to 0 shows the rankings are independent and not associated with
each other.

We use a neural network with two hidden layers, with 600 and
300 Rectifier Linear Units (ReLU) each, respectively and chosen
from cross-validation to give the best results. We train the model
on different subsets of the data based on the movement type and
the performer. We also experiment with different window sizes.
The windows of frames are concatenated in a single feature vector
and then fed into RankNet. This is to cover different lengths of
temporalities of movement. We stop learning after 3000 epochs.
This value was chosen because we notice that after 3000 epoches the
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Table 3: The Goodman-Kruskal Gamma for Valence Rank-
ings (p < 0.0001)

Window Sizes (all performers)
W = 1 W = 3 W = 12

Walking 0.664982 0.695 0.668
Sitting 0.543481 0.535 0.537
Hugging 0.205258 0.217 0.245377
Pointing 0.548836 0.544 0.548
Lie Down 0.600258 0.602 0.589
Free Improv 0.603071 0.608 0.574696
Improv Facing 0.731329 0.714 0.713
Improv Static 0.274803 0.291 0.262
All Movements 0.582195 0.561 0.536

loss value was no longer changing. We use 10-fold cross-validation
on our training data to report the model accuracy. The G values
are summarized in Table 3 For valence rankings, and in Table 4 for
arousal rankings. The results from models that are trained on the
data from only one performer each time is reported in Table 5.

However, there are a few factors of which we should make note.
For the walking movements, we can consider a single walking cycle
to be regarded as a single instance of that specific movement type
and we have a few cycles of those per affect and mover. For all other
movement types we only have a single instance. So however many
of the frames for validation we set aside, those frames belong to the
same performance. Thus, any conclusions about the generalization
of the model beyond this dataset is unreliable. In other words, with
the data we have, we are unable to test our machine learning models
properly, except maybe for the walking movements.

The fact that many of the highest gammas came from a window
size of 1 suggests that this method, or at the very least this con-
figuration of neural network, is more effective for postures than
movement. The high gamma for performer 3 suggests that she was
able to act out her intended affect most effectively. However, this
may also be due to performer 3 only acting in the walking move-
ments, which as was just mentioned is the most reliable movement.
Furthermore, we see that arousal is much more consistent in having
a higher gamma in the window size of 1 as well as having higher
gamma than valence across the board. This is again in accordance
with the suggestion that arousal is easier to recognize and learn,
both by human viewers as well as a machine. Looking at the dif-
ferent movements in Table 3, we see that that the hugging and
improv static movements have resulted in a much lower gamma
than the others. Compared to the others, these two types have the
least amount of movement, suggesting that changes in postures or
some other movement characteristics that we are unaware of are
needed in order to recognize valence with a machine.

7 CONCLUSION
We first conducted a groundtruthing experiment on CrowdFlower,
a crowdsourcing platform, where we surveyed participants from
all over the world. We then constructed a machine learning model
using RankNet to predict the relative ranks for pairs of motion
capture clips in a variety of movements. These results and contribu-
tions are a first step in future experiments in affect estimation with
large amounts of motion capture data, leading to use cases such as
database labelling and movement generation.

Table 4: The Goodman-Kruskal Gamma for Arousal Rank-
ings (p < 0.0001)

Window Sizes (all performers)
W = 1 W = 3 W = 12

Walking 0.757263 0.763 0.741
Sitting 0.852446 0.846 0.789
Hugging 0.938629 0.914 0.878
Pointing 0.903560 0.884 0.853
Lie Down 0.883156 0.878 0.821
Free Improv 0.863757 0.862 0.826
Improv Facing 0.878537 0.859 0.831
Improv Static 0.866419 0.834 0.832
All Movements 0.6271973 0.623 0.606

Table 5: The Goodman-Kruskal Gamma for Valence and
Arousal Rankings - Individual Performers (p < 0.0001,W =

3)

P1 P2 P3
Valence 0.496008 0.587459 0.647168
Arousal 0.638740 0.667621 0.750769

In the CrowdFlower survey, participants were given the defini-
tion of valence and arousal as well as training examples. They then
watched pairs of motion capture clips and were required to answer
which within the pair had higher valence or arousal. These rankings
were used in a quicksort algorithm to establish the relative ranks
of 181 motion capture clips, containing 9 different movements. The
survey showed better than random percent agreement but slightly
lower compared to video-based affect recognition surveys. This is to
be expected as it is not surprising that the lack of facial expression
would result in an increased difficulty to distinguish affect.

Our experiments with RankNet show that it is possible to build
machine learning models to learn the relative ranking of motion
capture clips, with Goodman-Kruskal gamma of 0.62 to 0.93 in case
of arousal rankings, and 0.24 to 0.73 in case of the valence rankings.
The performance highly depends on the movement type, as well
as the performers in that, having consistent movement patterns in
the training data (i.e., same movement type and same performer)
improve the chances that RankNet can effectively learn from them.

Another observation is that ranking predictions for valence were
more or less lower than those for arousal. This is consistent with
the findings from the survey in which higher number of people
failed the valence pre-survey quiz, as well as the lower post-survey
ratings for valence.

We understand the current limitations of our learning to rank
approach. First, there is only one repetition of each combination of
movement type/performer/affective state. This limits the amount
of variation in the data and the ability of the model to generalize.
We plan to gather more data and perform larger ground-truthing
studies. Second, RankNet does not take into account the temporality
of the data. As we see in the results, the model achieve higher
precision, in most cases, with a window size of 1, which means that
the model is essentially learning the postures alone and not the
dynamic qualities of the movement.
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We are interested in exploring training more effective machine
learning models such as Recurrent Neural Networks. Furthermore,
as mentioned in Section 6.2.2, the hugging and improv static move-
ments have resulted in significantly lower gamma compared to the
other movements. An area of exploration is establishing a set of
rules or characteristics for different movement types that will de-
termine whether the movement would be easy for affect estimation
by machines. It may also be worth considering time-series analysis
techniques instead of neural networks to try to account for the
temporal aspect of movement.
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