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Abstract—Cybersickness, which is also called Virtual Reality 
(VR) sickness, poses a significant challenge to the VR user 
experience. Previous work demonstrated the viability of 
predicting cybersickness for VR 360° videos. Is it possible to 
automatically predict the level of cybersickness for interactive 
VR games? In this paper, we present a machine learning 
approach to automatically predict the level of cybersickness for 
VR games. First, we proposed a novel ranking–rating (RR) score 
to measure the ground-truth annotations for cybersickness. We 
then verified the RR scores by comparing them with the 
Simulator Sickness Questionnaire (SSQ) scores. Next, we 
extracted features from heterogeneous data sources including the 
VR visual input, the head movement, and the individual 
characteristics. Finally, we built three machine learning models 
and evaluated their performances: the Convolutional Neural 
Network (CNN) trained from scratch, the Long Short-Term 
Memory Recurrent Neural Networks (LSTM-RNN) trained from 
scratch, and the Support Vector Regression (SVR). The results 
indicated that the best performance of predicting cybersickness 
was obtained by the LSTM-RNN, providing a viable solution for 
automatically cybersickness prediction for interactive VR games. 

Keywords— Machine Learning; Virtual Reality; Cybersickness. 

I. INTRODUCTION 
With the release of consumer Virtual Reality (VR) 

products, VR has gained in popularity and been widely used in 
many fields, such as games, film, medical training, 
psychological therapy, education, museum, and sports. VR is 
defined as a computer-generated interactive virtual world that 
the user is effectively immersed in and has dynamic control of 
the viewpoint [1]. However, the VR experience is often 
accompanied by VR sickness, which poses a great challenge 
and safety issue. VR sickness, also called cybersickness, is the 
motion-sickness-like symptoms that occur during exposure to 
the virtual environment [2]. The symptoms of cybersickness 
include nausea, retching, vomiting, increased salivation, cold 
sweating, drowsiness, pallor, dizziness, etc. Since the reported 
incidence of cybersickness is 61–80% [3], cybersickness is a 
major barrier to the wider use of VR. In particular, it limits the 
effective use of VR for training, rehabilitation, and therapeutic 
purposes. 

The pathological cause of cybersickness is unknown. The 
most common theory in cybersickness research is the sensory 
mismatch theory. It states that the sickness is caused by the 
conflict of different sensory input channels, such as visual, 
auditory, and vestibular [2]. Because cybersickness cannot be 

completely eliminated at the current stage, automatically 
predicting the level of cybersickness can help the systematic 
control, for example, will enable the VR games to set 
individualized breakpoints based on the player’s cumulative 
cybersickness level, or allow the players to review the 
cybersickness score before purchasing a new VR game. 
Machine learning provides techniques to build predictive 
models from real-world gameplay data, and previous works 
evaluated the viability of using machine learning to 
automatically predict cybersickness for 360° videos [4,5]. To 
the best of our knowledge, no work has utilized a machine 
learning approach to predict cybersickness for interactive VR 
games. The difficulties of predicting cybersickness in the real-
world scenarios of VR gameplay include rich interactions, 
dynamic changes of viewpoints, and subjective experiences of 
cybersickness. To approach this problem, we first designed a 
ranking–rating (RR) score to measure the degree of 
cybersickness, and aimed to reduce the cognitive load and 
achieve consistency within and between annotators. Then we 
collected VR gameplay data and trained machine learning 
models based on each piece of gameplay data, rather than on 
the averaged data for each game, to allow our model to capture 
the interactive and individualized nature of VR gameplay. Our 
contributions to the VR community are the following: 

x Designed a ranking–rating score to annotate the level 
of cybersickness and compared it with the Simulator 
Sickness Questionnaire (SSQ), which is the most 
widely used questionnaire in cybersickness studies. 

x Utilized heterogeneous data sources including the VR 
visual input, the head movement, and the individual 
characteristics. 

x Built machine learning models to predict the level of 
cybersickness based on the heterogeneous data and the 
ranking-rating annotations. 

The paper is structured as follows: we first review the 
previous work on predicting cybersickness (Section II). Next, 
we describe our methods of dataset construction (Section III), 
data preprocessing (Section IV), and feature extraction (Section 
V). We built three machine learning models and compared 
their performances (Section VI). Finally, we present our 
conclusion and future work (Section VII). 
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TABLE I.           THE FACTORS OF CYBERSICKNESS 

 Hardware Software Content Individual 

Measured 
Factors 

• Head movement 
 

• Motion in a scene 
• Scene texture 
• Color in a scene 

• Video game experience 
• VR game experience 
• Susceptibility to motion sickness 

Controlled 
Factors 

• Field of view 
• Resolution 

• Sitting vs. standing  • Duration of VR exposure 

Unused 
Factors 

• None • Independent visual backgrounds (elements of the visual 
field that remain stable relative to the user [6]) 
• The degree of control (to what extent do users have control 
over their movement within a virtual environment [7]) 
• Scene content  
• Change of Color (hue, saturation, and brightness) over a 
scene 

• Postural instability (the ability of an individual to 
maintain balance and postural control, usually 
measured by body sway [8]) 
• History of headaches/migraine 
• Age 
• Gender 

 

II. RELATED WORK 

A. Factors of  Cybersickness 
Previous cybersickness research usually attributes the 

factors of sickness to three categories [2,6]: 1) hardware: the 
VR device and its configuration; 2) software: the VR content; 
and 3) individual: the user who interacts with the VR 
environment. Here, we list the most relevant factors in Table I 
as adapted from Rebenitsch’s thorough literature review and 
prioritization (Table XI: Confirmed Factors, Table XII: 
Probable factors, and Table XIII: Possible factors [6]). 

B. Traditional Approaches to Predict Cybersickness 
As Table I shows, there are many cybersickness-related 

factors, whose configurations are quite flexible. Moreover, the 
interactions among factors are complex. Therefore, previous 
studies focused on controlled experiments in laboratory 
settings to determine the causality of one or more factors that 
account for cybersickness. 

Kennedy et al. identified 16 symptoms as statistical 
indicators that showed significant changes from pre-exposure 
to post-exposure in 1,119 trial data [9]. Thus they devised an 
instrument called Simulator Sickness Questionnaire (SSQ) to 
quantify and predict the level of simulator sickness. It is worth 
pointing out that cybersickness, simulator sickness, and motion 
sickness share similar symptoms but are caused by exposure to 
different situations. While motion sickness usually involves 
actual motions, simulator sickness and/or cybersickness are 
subsets of motion sickness and are experienced while the users 
remain stationary [2]. The SSQ is the most widely used 
questionnaire in cybersickness studies [10]. It asks the degree 
of 16 symptoms, with a four-level severity scale of “0-none, 1-
slight, 2-moderate, and 3-severe”. The 16 symptoms are 
attributed to three subscales of nausea, oculomotor, and 
disorientation. The SSQ score is calculated as 3.74 times the 
sum of the three subscales. According to [9], after testing nine 
simulators from 3,691 samples, the mean ± SD of SSQ is 9.8 ± 

15.0, the median is 3.7, and the SSQ score ranges from 0.0 to 
108.6. 

Since cybersickness is a subjective experience, to predict 
individual differences, Golding devised the Motion Sickness 
Susceptibility Questionnaire short version (MSSQ) [11]. It is 
an 18-item self-report questionnaire that asks participants about 
their motion sickness experience (scored with numbers 0–3) 
when riding different transportations in childhood and 
adulthood. The MSSQ shows good reliability and validity for 
predicting individual susceptibility to motion sickness. To 
calculate the MSSQ score, for each subscale of childhood and 
adulthood, subscore = (total sickness score) × 9 / (9 – the 
number of types not experienced). The MSSQ score is the 
summation of the childhood and adulthood subscores. It ranges 
from 0 to 54. According to [11], the mean ± SD of MSSQ 
score was 12.9 ± 9.9 with a positively skewed distribution from 
a normative sample of 257 university students. 

Rebenitsch developed several single-factor linear models 
that incorporate multiple factors to predict cybersickness [6]. 
Based on a set of controlled experiments involving 24 
participants, the model on individual factors explains 37% of 
the adjusted variance of cybersickness. It included factors of 
MSSQ, headache, and video gameplay. Based on previous 
studies with reported configurations, the researcher built linear 
models on hardware and software factors, and it explained 55% 
of the adjusted variance. The model included factors of 
duration, tracking, controller type, seated or not, the realism of 
a virtual environment, the field of view, and movement in VR. 

C. Machine Learning Approach of Predicting Cybersickness 
for 360° Videos 
While the traditional controlled experimental approaches 

achieved high internal validity [12] in providing the causal 
correlation between specific factors and cybersickness, they 
sacrificed external validity of generalization to the real world, 
and may not capture the complex interactions among factors. 
Machine learning provides an alternative approach to this 
problem. It learns directly from real-world observational data 
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and saves the experimental labor of controlling variables one at 
a time to determine their correlations. After a thorough 
literature search, we list the recent work related to 
cybersickness and machine learning. 

Padmanaban et al. built a machine learning model to predict 
the sickness level when watching a 360° stereoscopic video 
[4]. They collected a set of 109 one-minute videos annotated 
with SSQ from 96 participants. They then trained a bagged 
decision tree as the machine learning model on hand-crafted 
features (quantifying speed, direction, and depth) from video 
content. Their model generally outperformed a naive estimate 
but was ultimately limited by the size of the dataset. During the 
data collection, the participant’s head motion was constrained 
using a headrest to ensure that all users saw the same scene and 
the participant was not allowed to look around. This limits their 
model to be generalized to a fully interactive VR environment 
in which the viewpoint changes frequently. 

Kim et al. adopted an unsupervised learning approach to 
detect irregular motions in 360° videos [5]. The deep 
convolutional autoencoder extracts features from five 
consecutive video frames in the encoder part and reconstructs 
the video sequences in the decoder part. Since the 
reconstruction errors were high for irregular motions, this 
network was used as an objective measure of the exceptional 
motions, and such measures had a high correlation with a 
subjective measure of SSQ. However, because the training and 
test videos used in this study were consecutive driving videos 
of cities and roads, this may make the model not generalize 
well to complex scenarios in VR gameplay that involve 
dynamic changes of viewpoints and scenes. Moreover, their 
model only took account of the single motion velocity factor to 
measure cybersickness. 

Despite the previous progress in predicting cybersickness, 
none has used machine learning models to predict the level of 
cybersickness for interactive VR games. Built upon the 
previous work, we present a machine learning approach to 
predict cybersickness for VR games.  

III. DATASET CONSTRUCTION 

A. Study Design 

1) Factors Included in the Study 
We designed a study and recruited participants to collect 

data for building the predictive model. In our experiment, we 
tried to include as many factors of cybersickness as possible 
based on previous literature reviews. Among them, some were 
included as measured factors, while others were included as 
controlled factors that were fixed throughout the study. The 
rows of “Measured Factors” and “Controlled Factors” in 
Table I summarize the factors included in this study. We 
describe the methods of collecting these factors below. 

a) Hardware 
We included head movement as a hardware factor of 

cybersickness. Head movement was recorded as the changes of 
position and rotation of the head-mounted display (HMD), with 
a sample rate of 500 Hz. To represent the head movement, the 
captured data were later processed to extract the following 

factors: linear speed and acceleration in 3-D space, and the first 
and second difference of quaternion for spatial rotation. 

b) Software Content 
We recorded the eye screen video that was displayed in the 

HMD. The visual output from the HMD was projected to the 
desktop and was recorded with a both-eye view at 60 frames 
per second (fps). The captured videos were then processed to 
extract factors of motion, texture, and color. 

c) Individual 
We designed a demographic questionnaire to record 

individual factors. The video game experience and VR game 
experience were collected as binary data (0 for rarely, 1 for 
often). The susceptibility to motion sickness was measured by 
MSSQ.   

Some factors, although related to cybersickness, were 
controlled throughout the study. Although these controlled 
factors were not included in our present models, we reported 
their configurations in Table II, so that the dataset can be 
extended by collecting more data with different configurations 
in future work. Due to the nature of our pilot study, other 
possible factors were not collected in our study, or not included 
in our present models, as shown in the row of “Unused 
Factors” in Table I. We plan to take them into consideration in 
future work.  

2) VR Games Used in the Study 
We chose five “off-the-shelf” VR games for the study 

based on the distribution of each factor. The games are: 1) The 
Night Cafe: A VR Tribute to Vincent Van Gogh 1; 2) NoLimits 2 
Roller Coaster Simulation 2; 3) Endless Labyrinth 3; 4) InCell 
VR 4; and 5) Audioshield 5. The game configurations are listed 
in Table III. 

3) Ranking-Rating Measure of Cybersickness 
 For quantifying subjective assessment, ratings are the most 
often applied instrument. However, because contextual 
situations differ, the meaning of ratings may change over time 
or across individuals [13]. Compared with ratings, ranking-
based approaches show consistency within participants and 
over time [14, 15]. However, a ranking system itself cannot 
easily assess the distance between values for one participant, 
and it is difficult to compare the rankings between participants.  

                                                           
1 https://store.steampowered.com/app/482390 
2 https://store.steampowered.com/app/301320 
3 https://store.steampowered.com/app/495830 
4 https://store.steampowered.com/app/396030 
5 https://store.steampowered.com/app/412740 

TABLE II.           FACTORS CONTROLLED IN THIS STUDY 

Hardware Software Content Individual 

VR device = HTC Vive 
Field of view = 110° 
Resolution = 1080 ×1200 
Refresh rate = 90 Hz 

Position = Sitting Duration = 3 minutes 
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TABLE III.         THE FIVE VR GAMES PLAYED IN THIS STUDY 

Name Audioshield The Night Cafe InCell VR Endless Labyrinth NoLimits 2 Roller 
Coaster Simulation 

Game level 
played in the 
study 

Difficult: Normal; Music: 
Chopin Nocturne Op.9, 
No.2; Skin: Private 
amphitheater 

The first 3 minutes of the 
game Level 1 The first 3 minutes of the 

game 
“Dive Park” theme in the 
default library 

Control of 
movement 

No full-body movement 
in space 

Teleport 

The movement along the 
axis is forced by the 
game. The player could 
move the head to control 
the orientation. 

Use a controller to glide 
in the labyrinth. 

The movement is forced 
by the game 

Use of 
controller Two controllers One controller to teleport None One controller None 

Game 
Screenshot 

 

 

 

 

 

 

 

 

 

 

 

 

Table IV lists the pros and cons of the two measures 
[13,15,16].  
 

TABLE IV.          PROS AND CONS OF RATING AND RANKING. 

 Rating Ranking 

Pros • Widely used 
• Easy to design 
  

• A higher inter-annotator reliability 
• The relative ranking task is simple for 
participants. 

Cons • Imposes heavy 
cognitive load on the 
participants 

• It is relatively difficult to design a 
ranking-based measure 

• The analysis method of ranking is less 
commonly known 

 
The two measures may not be mutually exclusive [17]. 

Based on the advantages of both measures, we designed an 
instrument, named “ranking-rating” (RR) measure, that 
combines the ranking and rating at the same time to assess 
cybersickness across games and individuals. To compare the 
RR measure with the previous measures, after each gameplay, 
we also asked the participants to answer the SSQ, which is a 
rating-based measure that widely used in cybersickness studies. 

Here, we describe the procedure of using the RR measure 
for cybersickness. The following rating and ranking processes 
are based on an 11-point scale (0–10, 0 for no sickness and 10 
for the highest level of sickness). For each participant, the RR 
measure consists of two steps. 

First step: After playing the first game, participants were 
asked to rate the score of cybersickness based on their 
understanding of the scale. Starting from the second game, 
after each gameplay, participants were asked to evaluate their 
cybersickness based on the relative comparisons (ranking) 
among the games they had played so far. By ranking, the 

participants faced less cognitive load compared to solely rating 
the next game. It also avoids inconsistencies potentially caused 
by a changing understanding of the scale. These scores were 
used as references in the second step.  

Second step:  After playing all the games, participants were 
asked to adjust all the scores they marked in the first step. They 
could modify the order of the ranking, and adjust the distance 
between each other. The use of fractions or decimals was 
encouraged, and if decimals were used, all participants chose to 
report their scores with a resolution of 0.5. The scores obtained 
in the second step were the final RR scores of cybersickness. 
The idea of designing this second step is that after playing all 
the games, participants now have a more general understanding 
of the various levels of cybersickness. This procedure also 
helps to minimize the bias introduced by the initial rating of the 
first game. 

B. Study Procedure  
The data collection was conducted in an experimental 

setting. The study was approved by Simon Fraser University’s 
Research Ethics Board. The inclusion criterion is people above 
18 years old. The exclusion criteria are people with migraines 
or other severe diseases which may affect the study. 
Participants were recruited using convenience sampling. 
Written informed consent was obtained from participants 
before enrolment. A total of 25 participants were enrolled in 
this study. One participant’s data were discarded because of 
withdrawal and data incompletion. The data of 24 participants 
(Female = 10, Male = 14; Age 28.0 ± 7.5 years) were included 
in the final data processing. 

During the study, the participants were asked to play five 
“off-the-shelf” VR games as stated above. The games were 
purchased from Steam gaming platform6. Each gameplay lasted 

                                                           
6 http://store.steampowered.com/ 
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for three minutes. The gameplay sequence was randomly 
assigned by drawing lots. Participants remained seated on a 
swivel chair to play the VR games. They could move their 
body in the virtual environment by moving the swivel chair in 
the 2.5 × 2.5 meters physical space. 

We used HTC Vive as the VR gaming device. The Vive 
headset has a refresh rate of 90 Hz and a 110° field of view. 
The display resolution for each eye screen is 1080 × 1200. The 
games were run on an Alienware Desktop (Intel Core i7-5820K 
CPU @ 3.30 GHz, 12 Logical Processors; 16 GB RAM; Dual 
NVIDIA GTX 980) with Windows 10 Enterprise operating 
system. 

After each gameplay, the participants were asked to 
evaluate their levels of cybersickness using RR and SSQ 
measure, as stated in Section III.A.3. Then, the participants had 
a washout period between each gameplay for at least five 
minutes until they did not feel any sickness from the previous 
gameplay. After the whole gameplay session, the participants 
had a semi-structured interview to talk about their feelings of 
sickness during each gameplay. Then, they answered the 
demographic questionnaire before completing the study. The 
study session last for 1–1.5 hours in total. The participants 
were thanked with $10 CAD cash for their time and effort 
participating in this study. 

IV. DATA PREPROCESSING AND AUGMENTATION 

A. Sickness Score Calculation 
The SSQ score was calculated according to the method 

described in Section II.B. The RR score was collected directly 
in the study without any effort to calculate, as stated in Section 
III.A.3. It has the range of [0.0, 10.0]. 

The Pearson’s correlation coefficient r between the SSQ 
and RR scores is 0.838, which indicates that the two have a 
strong positive linear correlation. Therefore, we used the RR 
score as the ground-truth label for the construction of the 
following predictive models. Figure 1 visualizes the 
distribution of the RR and SSQ scores and their correlation. 

 
Figure 1. The distribution and correlation between RR and SSQ score. 

 
It is worth noting that instead of using the averaged RR 

score of each game as the ground-truth label, we used the raw 
individual RR scores as the ground truth, and regarded each 

gameplay as one data point. This is because each gameplay 
information (eye video recordings, head movement, individual 
characteristics, cybersickness experience) is different from the 
other. We ended up having 120 raw data points (5 games per 
participant × 24 participants).  

B. Data Preprocessing  
For the eye screen video data, first, we truncated the 

original recordings to obtain the first 125 seconds of the eye 
screen videos. Second, we rescaled the video recordings. For 
each video recording in the corpus, the size is 37 × 20 (width × 
height). Third, considering the low-frequency nature of the 
visual stimuli and the head movement, and the computational 
recourses, we downsampled our video recordings to 2 fps.  

For the head movement data, we truncated the first 125 
seconds of the raw data, which was in the same period aligned 
with the video data. We then downsampled the original 500 Hz 
data to 2 Hz to align with the video data. The time steps of 
video and head movement data were precisely aligned. The raw 
data consisted of two vectors: the position in 3-D space (x, y, 
z), and the quaternion spatial rotation (qw, qx, qy, qz). A 
quaternion uses four numbers to simplify the way to encode an 
axis–angle rotation to a position vector. The vector (qx, qy, qz) 
in a quaternion represents the position vector, and the scalar qw 
encodes the rotation angle. 

C. Data Augmentation 
Because each of the original video recordings is 125 

seconds long, each converted video recording has 250 frames 
in total. Then, we adopted a windowing method to perform 
data augmentation to enlarge the training set artificially. We 
experimented with a couple of settings and chose the window 
size of 60 frames and a step size of 10 frames. For one video 
recording, we kept selecting 60 consecutive frames as one 
augmented recording and moved one step ahead, until we 
reached the end of a video recording. After the data 
augmentation, we ended up having 2,400 video recordings. 
One augmented video recording is 30 seconds long and 
contains 60 frames. The annotations of each augmented video 
recording are the same as the annotations of the original video 
recording. 

The head movement data were augmented in the same way 
as the video recording. We ended up having a set of 2,400 
augmented data points, and each has the shape of 14 × 60. The 
details of head movement features are described in Section 
V.B. 

V. FEATURE EXTRACTION 

A. Individual Features 
For the video game experience and VR game experience, 

we collected binary data with the demographic questionnaire. 
These data were treated as categorical features for the machine 
learning model. The details of these two features are described 
in Section III.A.1.c. In addition, we calculated the MSSQ score 
(numerical feature) according to the method described in 
Section II.B. 
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B. Head Movement Features 
We computed hand-crafted head movement features based 

on the original position vectors (x, y, z) and quaternion vectors 
(qw, qx, qy, qz).  For the position vector, we computed the 
speed feature (3 dimensions) as the first difference of two 
consecutive position vectors, and the acceleration feature (3 
dimensions) as the first difference of two consecutive speed 
vectors. For the quaternion vector, we computed the first 
difference (4 dimensions) and the second difference (4 
dimensions) of two consecutive quaternion vectors. The size of 
the head movement features is 14×60, where 14 is the total 
number of dimensions, and 60 is the total number of time steps 
(2 Hz for 30 seconds). 

C. Video Features (Eye Screen Video) 
We extracted low-level video features including color, 

motion, and texture. The ViVid [18] software package was 
used for the video feature extraction. 

1) Color: Hue, Saturation, and Brightness 
Regarding color features, we selected hue, saturation, and 

brightness, which are related to human perception of colors. 
For each color feature, the original range of the value is from 0 
to 255. Here, we divided the range into 32 bins. Instead of 
computing these features frame by frame, we computed these 
color features over the entire 30-second video recording (all 
frames together). We ended up having 96 dimensions of color 
features for one video recording.  

Hue is defined as “the degree to which a stimulus can be 
described as similar to or different from stimuli that are 
described as: red, orange, yellow, green, blue, violet” [19]. 
Saturation represents the level of purity of the color. A higher 
saturation value indicates less mixing of colors. By mixing 
more colors, the picture will turn gray. Therefore, the purity 
will decrease, and the saturation will decrease. The brightness 
feature represents the level of a source appears to be radiating 
or reflecting light, which is the perception elicited by the 
luminance of a visual target [20]. Similar to saturation, we 
separated the brightness value into 32 bins. 

2) Motion: Motion Intensity 
For motion features, we investigated the motion intensity, 

which is the level of motion between frames within the video. 
While the color features were computed over the entire video 
recording and presented based on its distribution, the motion 
intensity feature was extracted based on two consecutive 
frames. Since there are 60 frames in each augmented video 
recording, we have 60 time-steps of motion features in total. 

3) Texture: Contrast, Smoothness, Entropy 
We chose to compute contrast, smoothness and entropy 

features to provide the texture information of the video 
recordings. These are also frame-level features. Contrast is 
determined by the difference of color between the objects 
within an image. Smoothness represents the homogeneity of 
the gray level distribution of a frame. It is approximately 
inversely correlated with contrast. Entropy represents the level 
of randomness. Specifically, it is a measure of the amount of 
information, which must be coded by a compression 

algorithm. If the image has higher entropy, it contains more 
information. Each feature has 60 time-steps. 

D. Two Feature Sets 
We used two sets of features for different machine learning 

models separately. Feature Set 1 (Table V) contains the time 
sequence features (frame by frame) and was fed into the 
Convolutional Neural Network (CNN) and Long-Short Term 
Memory Recurrent Neural Networks (LSTM-RNN) models. 
We ended up having an 18 × 60 feature matrix, where 18 is 
the total number of dimensions, and 60 is the number of time 
steps. Each feature was normalized by subtracting its average 
and dividing by its standard deviation.  

TABLE V.         FEATURE SET 1, PREPARED FOR CNN & LSTM-RNN 

Features Feature Types Dimensions Time Steps 

Head Movement Temporal 14 60 

Motion Intensity Temporal 1 60 

Contrast Temporal 1 60 

Smoothness Temporal 1 60 

Entropy Temporal 1 60 

 
TABLE VI.         FEATURE SET 2, PREPARED FOR SVR 

Features Feature Types Dimensions 

Video Game Experience Categorical 1 

VR Experience Categorical 1 

MSSQ Numerical 1 

Head Movement 6 Statistics 84 

Hue Distribution 32 

Saturation Distribution 32 

Brightness Distribution 32 

Motion Intensity 6 Statistics 6 

Texture 6 Statistics 18 

 

The Feature Set 2 (Table VI) was prepared for Support 
Vector Regression (SVR) model. These features are either 
categorical features (video game experience and VR game 
experience), color features (distributions of hue, saturation, and 
brightness), or the statistics of time sequence features. For the 
statistics of each time sequence feature, we computed 6 
features: mean, standard deviation, skewness, kurtosis, 
maximum and minimum. We ended up having a 207-
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dimensional feature vector as listed in Table VI. Each feature 
was normalized by subtracting its average and dividing by its 
standard deviation. 

VI. MACHINE LEARNING MODELS AND PERFORMANCES 
In this section, we describe the construction of three 

machine learning models: the CNN, LSTM-RNN, and SVR. 

A.  CNN  
We built and trained a CNN model from scratch. We 

applied grid search to find the best hyperparameters such as the 
number of kernels in each layer, kernel size, learning rate, and 
decay. Our CNN is composed of two convolutional layers and 
one fully connected layer. The first convolutional layer filters 
the 18 × 60 × 1 input features with 16 kernels of size 3 × 3 × 1 
and a stride of 1. The second convolutional layer, connected to 
the first one, uses 16 kernels of size 3 × 3 × 16. We used 
maxpooling (2 × 2) for the outputs of both convolutional 
layers. There is a dropout layer between the second 
convolutional and the fully-connected layer, with a dropout rate 
of 0.15. The fully connected layer, connected to the second 
convolutional layer, is composed of 256 neurons. The output 
layer is composed of 1 neuron. We used the ReLU non-
linearity activation function for all convolutional layers and the 
fully connected layer. For the output layer, we use the linear 
activation to predict the level of cybersickness. All the weights 
were initialized based on a Xavier uniform. The CNN was 
trained using the RMSProp optimizer with a batch size of 32 
examples, learning rate of 1 × 10−3 and decay of 1 × 10−6. We 
trained 60 epochs before testing the model. 

B. LSTM-RNN  
We built and trained an LSTM-RNN from scratch. To find 

the best hyperparameters such as the number of neurons in 
each layer, learning rate, and decay, we used a grid search 
method. Our LSTM-RNN is composed of two stacked LSTM 
units. The input size is 18 × 60, where 18 is the number of the 
feature extracted from head movement and eye screen video 
data, and 60 is the number of time steps (See Table V). There 
are 64 neurons in each LSTM unit. The output layer is 
composed of 1 neuron. We used the tanh non-linearity 
activation function for LSTM units, and linear activation 
function for the output layer to predict the level of 
cybersickness. Similar to CNN, all the weights were also 
initialized based on a Xavier uniform. We trained the LSTM-
RNN using the RMSProp optimizer with a batch size of 32 
examples, learning rate of 1 × 10−2 and decay of 1 × 10−6. We 
trained 60 epochs before testing the model. We implemented 
the CNN and LSTM-RNN with Keras 2.0.  

C. SVR 
The SVR model maps the input data into a higher 

dimensional feature space using nonlinear mapping and builds 
a linear model in this feature space to make predictions. We fed 
the SVR with Feature Set 2 (See Table VI), selected the Radial 
Basis Function (RBF) kernel and used a grid search method to 
find the best hyperparameters of C and gamma. We 
implemented the SVR in scikit-learn 0.19.0.  

D.  Performances  
To train and evaluate the above three models, we applied 

repeated random sub-sampling validation. The augmented 
dataset composing a total of 2,400 30-seconds data was 
shuffled 10 times. Each time, 90% of the data were randomly 
selected for training the model, and the remaining 10% was 
used for testing. We use R2 and MSE to evaluate the 
performance of the prediction. Table VII presents the 
performance results of CNN, LSTM-RNN, and SVR. Among 
the three models, the LSTM-RNN model achieved the highest 
performance both on R2 (0.868) and MSE (0.009).  

TABLE VII.         MODEL PREDICTION PREFORMANCES 

 R2  a MSE b 

CNN 0.462 0.036 

LSTM-RNN 0.868 0.009 

SVR 0.793 0.014 

a. R2: Coefficient of determination 

b. MSE: Mean Square Error 

E. Discussion 
Our results showed that LSTM-RNN model outperformed 

CNN and SVR models in predicting cybersickness. One 
possible explanation is that the LSTM-RNN could remember 
things and find patterns across time to make predictions, which 
is suitable for the problem of predicting cybersickness based on 
the time-series events of VR gameplay. Another possible 
explanation is that the LSTM-RNN may be capable of 
modeling the interaction and “mismatch” between the head 
motion and visual motion stimuli. For example, it may capture 
a rapid visual change with no head movement, which 
corresponds to the sensory mismatch theory that explains the 
cause of cybersickness. In addition, the LSTM-RNN model 
could make predictions without the individual features; it only 
used the eye screen videos and head movement data as input. 
This would save the players from manually inputting their 
individual features for predicting cybersickness.   

The SVR model also achieved good, but not equivalent 
performance to the LSTM-RNN, probably due to the lack of 
capacity of representing the interactions among features. 
Regarding the CNN, it is reasonable that the CNN did not 
achieve satisfying results because it is more suitable to capture 
spatial rather than temporal information. 

Our system of predicting cybersickness can be utilized in 
the following usage scenarios: 1) Quantify cybersickness in a 
retrospective manner: it can be applied to automatically 
quantify the cumulative cybersickness over a period of 
exposure to VR games. It will allow the VR systems to set 
individual-based breakpoints to control cybersickness below a 
certain threshold and thus improve VR gaming experience. 2) 
Predict cybersickness in a prospective manner: our system 
enables the VR game developers and platforms to compute the 
cybersickness score automatically, thereby encourages the 
initiation of a cybersickness rating system. Such system allows 
the players to easily check the level of cybersickness of new 
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games. However, since our model requires eye screen video 
recordings and head movement data as input, such information 
cannot be acquired before the gameplay. One way to solve this 
problem is to invite a number of trial players to play the new 
game first and record their eye screen videos and head 
movement data. The data collected from the trial players will 
be fed to our model to get a number of predicted RR scores. 
Then, an overall RR score for the new game can be computed 
by averaging the predicted RR scores from each trial player. 

VII. CONCLUSIONS & FUTURE WORKS 
In this paper, we present a machine learning approach to 

automatically predict the level of cybersickness for interactive 
VR games. We reviewed the literature and selected the possible 
factors for cybersickness, and designed an experiment to 
construct the dataset. Different from previous study 
approaches, which mainly considered the static viewpoint of 
visual stimuli in VR as input, our study included the dynamic 
visual stimuli, head movement, and individual features. We 
designed the RR measure and aimed to achieve an easier and 
consistent assessment for cybersickness. We built three 
machine learning models and compared their performance of 
predicting cybersickness. The results indicated that the LSTM-
RNN is a more viable model for the problem of predicting 
cybersickness. 

The present dataset can be expanded in future work by 
collecting more data varying in the configurations of the 
measured and controlled factors as shown in Table I. As for the 
features extracted from eye screen video recordings, at the 
current stage, we only extracted low-level features such as 
color, motion, and texture. Since cybersickness is a multiplex 
reaction mingled with physiological and psychological 
processes, in the future work, we also intend to include higher-
level information, such as semantic or emotional features to 
improve our model’s performance. 
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