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ABSTRACT
Musical agents are artificial agents that tackle musical creative tasks, partially or completely. This
review of musical agents combines the terminology of Generative Arts (artistic practice) and the sci-
entific literature of Computational Creativity, Multi-Agent Systems (MAS), and Artificial Intelligence.
We define Musical Metacreation as a field that studies the partial or complete automation of musi-
cal tasks. We survey seventy-eight musical agent systems, and present a typology of musical agents.
After examining the evaluation methodologies of musical agents, we propose possible future steps
while mentioning ongoing discussions in the field.
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1. Introduction

The works of Generative Music rely on autonomous
systems for part or all of their production. One type
of such systems is the automaton, a self-operating
machine that carries out pre-defined procedures. The
first musical automaton, al-Jazari’s water clock, appeared
in the seventh century as a result of advances in
hydraulics (Fowler, 1967). This water clock could gen-
erate music using a mechanical and hydraulic system.
With the onset of the industrial revolution and following
the invention of electricity, automatic musical machines
entered a new phase in their development, and more
musical automata emerged. These included amongst
other the Regina Concert Orchestrion, the Autophone
and the Link Orchestrion. And now, after the digital rev-
olution, artificial agents have become the modern day
equivalent of the automaton.

In the digital age, new autonomous tools and systems
have been emerging in creative applications. Artificial
Intelligence (AI) and Multi-Agent Systems (MAS) are
two examples of fields that provide such autonomous
tools. Simon (1960) defines AI as ‘the science of hav-
ing machines solve problems that do require intelligence
when solved by humans.MAS are distributed/concurrent
systems that are autonomous, able to make indepen-
dent decisions, and run online (Wooldridge, 2009).
Software agents in MAS are autonomous pieces of soft-
ware which contain perception and action abilities.

CONTACT Kıvanç Tatar ktatar@sfu.ca Interactive Arts and Technology, Simon Fraser University, 250-13450 102 Avenue, Surrey BCV3T0A3, Canada

Applications of MAS are beneficial to modelling and
designing musical creativity because musical creativity
involves distributed, coordinated entities with percep-
tion and action abilities. For example, in a live music
performance, musicians collaboratively create music by
listening to each other. Similarly, we could distribute
composition tasks into such sub-tasks as producing indi-
vidual instrument parts or layers in experimental music
(Roads, 2015).

Our review gives an introduction to researchers and
practitioners who are interested in musical agents. Musi-
cal agents are artificial agents that tackle musical creative
tasks, in part or as a whole, and use the methods of
MAS and Artificial Intelligence to automatise these tasks.
Thus, this topic is naturally interdisciplinary, combining
music, science, design and technology. In this paper, we
present a state of the art in musical agents that utilise
MAS technologies for musical creativity. Three types of
artificial agents appear in the literature: software agents
that are purely computational; virtual agents that are
embodied in a Computer Generated Image (CGI);1 and
robotic agents that hold a physical form.2 In our survey of

1 Please refer to Churchill, and Prevost et al. (2000) and Hartholt et al. (2013)
for an introduction to virtual agents in CGI.

2 BretanWeinberg (2016) present a state of the art inmusically creative robotic
agents.
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Table 1. Musical Agents.

# System Architecture # of Agents # of roles Environment Corpus Input Output Communication HIM MuMe Task Evaluation Code Public Section

Cognitive Musical
Agents

4

1 VMMAS knowledge
representation

Multi-agent/
Heterogenous

Multi-role Real-world Symbolic Symbolic Symbolic Env. P Comp., Accomp. � Not shared 4.1

2 Inmamusys knowledge
representation

Multi-agent/
Heterogenous

Multi-role Real-world Symbolic Symbolic Symbolic Mess. C Comp., Accomp. � Not shared 4.1

3 Generating Affect knowledge
representation

Multi-agent/
Heterogenous

Multi-role Real-world Hybrid None Audio Mess. – Comp. Shared � 4.1

4 Coming Together BDI Multi-agent/
Homogenous

Single-role Real-world – Symbolic Hybrid Hybrid – Comp. Shared � 4.2

5 Indifference Engine BDI Multi-agent/
Heterogenous

Single-role Hybrid – Audio Audio Hybrid P Improv., Comp. Not shared � 4.2

6 MUSIC-MAS BDI Multi-agent/
Homogenous

Multi-role Real-world Symbolic Symbolic Symbolic Hybrid C Assisted Comp.,
Style Im.

� Not shared 4.2

7 HSMM Cognitive Mono-agent Single-role Real-world Symbolic Symbolic Symbolic Env. P+C+L Comp., Assisted
Comp.„ Cont.

Not shared � 4.3

8 MusiCOG Cognitive Multi-agent/
Heterogenous

Real-world Symbolic Symbolic Symbolic Env. P+L Comp., Assisted
Comp.

Shared � 4.3

9 MAMA Cognitive Multi-agent/
Homogenous

Single-role Real-world Hybrid Hybrid Hybrid Hybrid – Accomp., Improv. � Shared 4.3

Reactive Musical
Agents

in Real-World
Environments

5.1

10 Cypher Rule-based Multi-agent/
Heterogenous

Multi-role Real-world Symbolic Symbolic Symbolic Mess. C Comp. Not shared 5.1.1

11 Voyager Rule-based Multi-agent/
Heterogenous

Single-role Real-world – Hybrid Symbolic Env. P Improv. Shared � 5.1.1

12 Bob Rule-based Mono-agent Single-role Real-world Symbolic Symbolic Symbolic Env. P+L Improv.,Melody
Gen.

Not shared 5.1.1

13 ARHS Rule-based Multi-agent/
Homogenous

Single-role Real-world – Audio Audio Env. P Improv. Not shared � 5.1.1

14 LL: Rule-based Multi-agent/
Homogenous

Single-role Real-world – Audio Audio Env. P Improv. � Not shared � 5.1.1

15 Virtualband Rule-based Multi-agent/
Heterogenous

Multi-role Real-world Hybrid Audio Audio Mess. P+L Style Im.,
Accomp.

Not shared � 5.1.1

16 Odessa Rule-based Mono-agent Single-role Real-world – Audio Symbolic Env. P Improv. � Not shared � 5.1.1
17 Rhythms as··· Rule-based Multi-agent/

Homogenous
Single-role Real-world – Symbolic Symbolic Mess. – Rhythm Gen. Not shared 5.1.1

18 VirtuaLatin Rule-based Multi-agent/
Heterogenous

Multi-role Real-world Symbolic Symbolic Symbolic Env. P Rhythm Gen. Not shared 5.1.1

19 DrumTrack Rule-based Mono-agent Single-role Real-world – Audio Audio Env. P Accomp., Rhythm
Gen., Improv.

Not shared � 5.1.1

20 BBCut2 Rule-based Mono-agent Single-role Real-world Audio Audio Audio Env. P+L Accomp., Rhythm
Gen., Improv.

Shared 5.1.1
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21 Kinetic Engine Rule-based/EC Multi-agent/
Heterogenous

Multi-role Real-world – Symbolic Symbolic Mess. C Rhythm Gen. Not shared � 5.1.1

22 Beatbender Rule-based Multi-agent/
Homogenous

Single-role Real-world – – Audio Mess. – Rhythm Gen. � Not shared 5.1.1

23 Andante Rule-based Multi-agent/
Heterogenous

Real-world – Audio Mess. – Comp. Not shared 5.1.1

24 PIWeCS Rule-based Multi-agent/
Heterogenous

Multi-role Real-world Audio Audio Audio Hybrid C Comp. Not shared 5.1.1

25 CT: Freesound Rule-based Multi-agent/
Homogenous

Single-role Real-world Hybrid Audio Audio Hybrid – Comp. � Shared � 5.1.1

26 Curatorial··· Rule-based Multi-agent/
Heterogenous

Multi-role Real-world Symbolic Symbolic Symbolic – – Curation,
Comp.

Shared � 5.1.1

27 ParamBOT Rule-based Multi-agent/
Heterogenous

Multi-role Real-world Agents – Audio Mess. – Curation,
Comp.

Shared � 5.1.1

28 GenJam Evolutionary
Computation

Mono-agent Single-role Real-world Symbolic Symbolic Symbolic Hybrid P+L Improv.,Melody
Gen.

Not shared 5.1.2

29 automated··· Evolutionary
Computation

Mono-agent Single-role Real-world – Audio Audio Env. P Improv. Shared 5.1.2

30 Frank Evolutionary
Computation

Mono-agent Single-role Real-world Hybrid Audio Audio Env. P+L Improv. Not shared � 5.1.2

31 RGeme Evolutionary
Computation

Multi-agent/
Homogenous

Single-role Real-world Symbolic Symbolic – Rhythm Gen. Not shared 5.1.2

32 ··· Tuning··· Evolutionary
Computation

Multi-agent/
Homogenous

Single-role Real-world – Symbolic Symbolic Hybrid – Assisted Comp. � Not shared 5.1.2

in Virtual
Environments

5.2

33 Frankensteinian··· Evolutionary
Computation

Multi-agent/
Heterogenous

Multi-role Real-world Symbolic – Symbolic Hybrid – Comp., Assisted
Comp.

Not shared 5.2.1

34 Living Melodies Evolutionary
Computation

Multi-agent/
Homogenous

Single-role Virtual ecosystem Symbolic – Symbolic Hybrid – Comp., Assisted
Comp.

Not shared 5.2.1

35 Emergent··· Evolutionary
Computation

Multi-agent/
Homogenous

Multi-role Virtual ecosystem Symbolic Symbolic Symbolic Env. – Rhythm Gen. Not shared 5.2.1

36 IMAP Evolutionary
Computation

Multi-agent/
Homogenous

Multi-role Real-world Symbolic Symbolic Symbolic Env. – Interpretation � Not shared 5.2.1

37 RiverWave Evolutionary
Computation

Multi-agent/
Homogenous

Single-role Virtual ecosystem – – Output Env. – Comp. Not shared � 5.2.1

38 Petri Evolutionary
Computation

Multi-agent/
Homogenous

Single-role Virtual ecosystem –
Computer
Vision Audio Env. C Comp. Not shared � 5.2.1

39 SwarmMusic Ecosystemic Multi-agent/
Homogenous

Single-role Virtual ecosystem – Symbolic Symbolic Env. P Comp. Not shared � 5.2.2

40 Swarm Granulator Ecosystemic Multi-agent/
Homogenous

Single-role Virtual ecosystem – Audio Audio Env. P Comp. Not shared � 5.2.2

41 Real-time··· Ecosystemic Multi-agent/
Heterogenous

Virtual ecosystem – Hybrid Hybrid Env. P Improv. Not shared 5.2.2

(continued).
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Table 1. Continued.

# System Architecture # of Agents # of roles Environment Corpus Input Output Communication HIM MuMe Task Evaluation Code Public Section

42 Nodal Ecosystemic Multi-agent/
Homogenous

Single-role Virtual ecosystem – Symbolic Symbolic Mess. C Comp. Shared � 5.2.2

43 OSCAR Ecosystemic Multi-agent/
Homogenous

Single-role Virtual ecosystem – Symbolic Symbolic Env. – Comp. Shared � 5.2.2

44 CT: Shoals Ecosystemic Multi-agent/
Homogenous

Single-role Virtual ecosystem Audio Parameter Parameter Mess. – Comp. Not shared � 5.2.2

45 earGram Actors Ecosystemic Multi-agent/
Homogenous

Single-role Virtual ecosystem Audio – Audio Env. C Comp. Not shared � 5.2.2

46 pMIMACS Ecosystemic Multi-agent/
Homogenous

Multi-role Virtual ecosystem – Symbolic Symbolic Env. – Interpretation � Not shared 5.2.2

47 SDS Ecosystemic Multi-agent/
Homogenous

Single-role Virtual ecosystem – Symbolic Symbolic Mess. – Melody Gen. Not shared 5.2.2

48 iMe Ecosystemic Multi-agent/
Homogenous

Multi-role Virtual ecosystem – Symbolic Symbolic Env. P Comp., Assisted
Comp.

Not shared 5.2.2

Hybrid Musical
Agents

6

49 POMDP Statistical
Sequence
Modelling

Mono-agent Single-role Real-world – Symbolic Symbolic Env. P+L Improv., Style
Im.

Not shared 6.1

50 Continuator Statistical
Sequence
Modelling

Mono-agent Single-role Real-world – Symbolic Symbolic Env. P+L Improv., Style
Im., Accomp.

Not shared � 6.1

51 Beatback Statistical
Sequence
Modelling

Multi-agent/
Homogeneous

Single-role Real-world – Symbolic Audio Mess. P+C Rhythm Gen. � Not shared 6.1

52 Ringomatic Statistical
Sequence
Modelling

Mono-agent Single-role Real-world Hybrid Symbolic Audio Env. P Rhythm Gen. � Not shared 6.1

53 Using FO··· Statistical
Sequence
Modelling

Mono-agent Single-role – Symbolic Symbolic Env. P+L Improv., Style
Im.

Not shared � 6.1

54 OMAX Statistical
Sequence
Modelling

Mono-agent Single-role Real-world Hybrid Hybrid Hybrid Mess. P+L Improv., Style
Im.

Not shared � 6.1

55 Anticipatory··· Statistical
Sequence
Modelling

Mono-agent Single-role Real-world Symbolic Symbolic Symbolic Env. P+C+L Improv., Style
Im.

Not shared 6.1

56 Improvagent Statistical
Sequence
Modelling

Mono-agent Single-role Real-world Symbolic Symbolic Symbolic Env. P Improv. Not shared 6.1

57 Improtek Statistical
Sequence
Modelling

Multi-agent/
Heterogenous

Multi-role Real-world Hybrid Hybrid Hybrid Env. P+C+L Improv., Style
Im.

Not shared � 6.1
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58 AO Statistical
Sequence
Modelling

Mono-agent Single-role Real-world Audio Audio Audio Env. P+C+L Improv., Style
Im.

Not shared � 6.1

59 PyOracle Statistical
Sequence
Modelling

Mono-agent Single-role Real-world Audio Audio Audio Env. P Improv., Style
Im.

� Shared � 6.1

60 VMO Statistical
Sequence
Modelling

Mono-agent Single-role Real-world Audio Audio Audio Env. P+C+L Improv., Style
Im

Not shared � 6.1

61 Filter Statistical
Sequence
Modelling

Mono-agent Single-role Real-world Hybrid Audio Audio Env. P Improv. Not shared � 6.1

62 SpeakeSystem Statistical
Sequence
Modelling

Mono-agent Single-role Real-world Symbolic Audio Audio Env. P+L Improv. � Shared � 6.1

63 ADTK Statistical
Sequence
Modelling

Multi-agent/
Heterogenous

Multi-role Real-world – Symbolic Symbolic Hybrid C Style Im.,
Improv.

Not shared 6.2

64 CinBalada Statistical
Sequence
Modelling

Multi-agent/
Homogenous

Multi-role Real-world – – Symbolic Mess. – Rhythm Gen. � Not shared 6.2

65 Reactive
Accompanist

Artificial Neural
Networks

Mono-agent Single-role Real-world – Audio Symbolic Env. P Improv.,
Accomp.

Shared 6.3

66 NNmusic Artificial Neural
Networks

Mono-agent Single-role Real-world – Audio Audio Env. P+L Improv. Not shared � 6.3

67 ··· Live Algorithms Artificial Neural
Networks

Mono-agent Single-role Real-world – Audio Audio Env. P Improv. Shared � 6.3

68 ··· Automated··· Artificial Neural
Networks

Mono-agent Single-role Real-world Symbolic Symbolic Symbolic Env. L Improv.,Melody
Gen.

Not shared 6.3

69 ML.* Artificial Neural
Networks

Mono-agent Single-role Real-world Hybrid Audio Audio Env. P+L Improv. Not shared 6.3

70 Connectionist··· Artificial Neural
Networks

Mono-agent Single-role Real-world Symbolic Symbolic Symbolic Env. – Rhythm Gen. Not shared 6.3

71 HARP Cognitive Mono-agent Single-role Real-world Symbolic Hybrid Hybrid Mess. C Assisted Comp.,
Improv.

Not shared � 6.4

72 Jambot Cognitive Mono-agent Single-role Real-world – Symbolic Symbolic Env. P Rhythm Gen.,
Improv.,
Accomp.

Not shared 6.4

73 ··· Motivation··· Cognitive Mono-agent Single-role Real-world Symbolic Symbolic Symbolic Env. P Improv. Partially shared � 6.4
74 Mockingbird Cognitive Mono-agent Single-role Real-world Hybrid Audio Audio Env. P+L Accomp.,

Improv.
Not shared 6.4

75 MAgentA Cognitive Mono-agent Single-role Real-world Symbolic – Symbolic Mess. – Comp. Not shared 6.4
76 FO with flow Cognitive Mono-agent Single-role Real-world Symbolic Symbolic Symbolic Env. P+L Improv. Not shared 6.4
77 MASC Cognitive Multi-agent/

Homogenous
Single-role Virtual ecosystem – – Symbolic Mess. C Rhythm Gen. � Not shared � 6.4

78 MASOM Cognitive Multi-agent/
Homogenous

Single-role Real-world Hybrid Audio Audio Env. P+L Improv., Comp. Partially � 6.4
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Musical Agents, we focus on purely computational soft-
ware agents, and exclude the virtual agent applications in
CGI, and robotics.

More specifically, the survey covers 78 musical agent
systems compiled in Table 1. Certainly, manymoremusi-
cal agents have been developed within the artistic prac-
tices. However, we only cover the systems whose details
are given in peer-reviewed publications. The systems are
referenced throughout the paper using the name conven-
tion system-name 1 , where the circled number refers to
the system numbers in Table 1. We propose a taxonomy
(Figure 2) that is framed using the terminology of MAS,
AI and Computational Creativity (CC). We incorporated
established dimensions and categorisations of these fields
in our taxonomy rather than coming up with new ones.
We aimed for a terminology that is inclusive of bothGen-
erative Music (an artistic practice) and Computational
Creativity for Music (a scientific research field). In the
next section, we supply a background of these associ-
ated fields. We present a typology of musical agents, and
extend the agent classification ofMAS to include the par-
ticularities of musical agents and introduce the various
dimensions of musical agents in Section 3. We subse-
quently group musical agents according to their MAS
architecture, and present details on each system in Sec-
tions 4, 5 and 6. Then, we discuss the evaluation of musi-
cal agents in Section 7. In the last section, we propose
Musical Metacreation as a field that combines science
(Computational Creativity) and artistic practice of Gen-
erative Music; and propose possible future directions in
the field.

2. Generative Art and Computational Creativity

We build our review using the terminologies of Genera-
tive Art, an artistic practice, and Computational Creativ-
ity, a scientific field. Before we start the survey of musical
agents, we would like to introduce the fields that encom-
pass musical agents. We first make a note of two generic
fields, GenerativeArt andComputational Creativity, then
we continue to more specific fields that are Metacreation
and Musical Metacreation.

The roots of Computational Creativity can be traced
back to Generative Art as well as AI, Artificial Life
(A-Life), Machine Learning and Cognitive Sciences.
Galanter (2003) defines Generative Art
as follows:

Generative Art refers to any art practice where the artist
uses a system, such as a set of natural language rules,
a computer programme, a machine, or other procedu-
ral invention, which is set into motion with some degree
of autonomy contributing to or resulting in a completed
work of art.

Figure 1. The continuum of autonomy.

Weobserve in this review that somemusical agent sys-
tems inherit rules that are strictly defined by their authors
whereas other systems adapt their aesthetics by a learn-
ing process. That is, the degree of genericity varies in
autonomous systems aswell asmusical agents. The gener-
icity ofmusical agents thus spans a continuous dimension
that ranges from specific systems to purely generic sys-
tems.Many rule-basedmusical agents lean towards to the
specific end of the genericity continuum. For example,
Voyager 11 includes 15 pitch generation algorithms that
are strictly defined by its creator, George Lewis (2000), as
such strictly implements the aesthetics of its creator. In
comparison, theContinuator 50 can learn the style of any
musician and does not include pre-defined music rules.
The Voyager is closer to the specific end of this contin-
uumwhereas theContinuator stands closer to the generic
end.

The notion of autonomy frequently emerges when
we discuss generative systems. As Galanter (2003)’s
definition emphasises, all generative systems posses
a degree of autonomy. Hence, we define a dimen-
sion of autonomy that is continuous, ranging from
purely reactive systems without autonomy to completely
autonomous systems (Figure 1). For example, Mus-
eScore3 is a music notation software. MuseScore only
produces music as a direct result of the user’s input
and is purely reactive. In contrast, the Continuator 50
autonomously learns from its user’s input and continues a
melody when the user/musician stops playing. The com-
puter assisted creativity would fall in the middle range
of the autonomy continuum. An example of computer
assisted creativity is assisted composition in music (see
Section 3).

Autonomous systems of Generative Art focus on artis-
tic creative tasks. Note that, there are also creative tasks
that are not artistic. For example, creating a culinary
recipe (Ámorim, Góes, da Silva, & Franćsa, et al., 2017)
is a creative task that is not artistic. The academic field,
Computational Creativity studies computational pro-
cesses for all creative tasks including the artistic ones.
Creative tasks of art and music are different than prob-
lems with optimal solutions. In the case of problems with
optimal solutions, the quality measures are well-defined.

3 https://musescore.org/
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For example, we evaluate the performance of a software
agent that aims to optimise fuel consumption, by mea-
suring the actual fuel usage. In contrast, creative tasks of
art andmusic tackle problems that lack definitive or opti-
mal solutions. The solutions of creative tasks of art and
music have ill-defined quality measures, e.g. there is no
notion of optimalmusic, nor universalmeasure of quality
in musical improvisation. Colton Wiggins (2012) define
Computational Creativity as,

The philosophy, science and engineering of computa-
tional systems which, by taking on particular respon-
sibilities, exhibit behaviours that unbiased observers
would deem to be creative.

The research in Computational Creativity mainly cen-
tres around the following three common themes:

– Computational models of (human) creativity: Such
studies research creativity using computational
models. In the case of artificial agents, the pos-
sibilities can also go beyond human capabilities.
For example, Collins (2017) proposes the notion
of a musical agent that listens to more music than
humans could.

– Computational systems for supporting creativity:
These systems are smart assistants for creative appli-
cations. These assistants can suggest solutions and
alternatives to the user by analysing the user’s
behaviour. Musical agents focusing on assisted com-
position are examples of such systems.

– Artificial creative systems: Computational models of
creativity are studied through the development of
artificial creative systems.Wepropose to define these
systems as Metacreations.

We call Metacreation the domain that both study and
produce systems that partially or completely automate
creative tasks. The notion of Metacreation and Meta-
level creativity was mentioned by many (Boden, 2009;
Buchanan, 2001; Wiggins, 2006a,b) and the term was
explicitly proposed by Whitelaw (2004). The term also
resonates back to the artistic statements (by artists such
as Nicholas Schöffer and James Seawright) in the 1950s
and 1960s (Whitelaw, 2004).

There are two types of creativity that Metacreation
explores. First, the simulation of human creativity is cre-
ativity as it is. For instance, Continuator 50 is a musical
agent that implements musical creativity as it is, by imi-
tating the musical style of a performer. Second, explor-
ing creative processes that humans are incapable of, is
creativity as it could be. For example, Shoals 44 explores
musical creativity as it could be, by sonifying the actions
of a virtual ant colony.

Building on this literature, Pasquier, Eigenfeldt, Bown,
and Dubnov (2017) define Musical Metacreation as ‘···
a subfield of Computational Creativity that addresses
music-related creative tasks’. We revisit this definition
and we propose that Musical Metacreation is the par-
tial or complete automation of musical tasks. MuMe, as
an interdisciplinary field, is inclusive of all approaches,
studies, domains and practices that automatise musical
tasks. We acknowledge that several other domains also
study the topics of MuMe, and we elaborate on this in
Section 8.4 We propose to define MuMe as a field that
uses the terminology of Generative Art (practice) and
Computational Creativity (science) to cover autonomous
systems of algorithmic music, generative music, machine
musicianship and machine improvisation. The applica-
tions of MuMe use techniques of computational models,
Artificial Intelligence (AI) and MAS to automatise musi-
cal tasks. Musical agents is a sub-category of MuMe,
and in the next section, we delve into musical agents
and the musical tasks that are carried out by musical
agents.

3. Typology of musical agents

A musical agent is an artificial agent that partially or
completely automates musical creative tasks. In the fol-
lowing, we explain the terms ‘musical’ and ‘agent’. We
refer to the termmusical in the context of Varése’sOrgan-
ised Sound (Varese & Wen-chung, 1966). In this survey,
the definition of music is inclusive of all works that use
sound as a medium. Hence, we also include implemen-
tations of Sound Art, Sonic Arts and Contemporary Art
works using the sound medium.

Although there is no consensus on the definition of
agents in Social Sciences and Philosophy (Emirbayer &
Mische, 1998), an agent is a well-defined term in Com-
puter Sciences. An agent is an autonomous system that
initiates actions to respond to its environment in timely
fashion (Wooldridge 2009). Similarly, musical agents
explore the notions of autonomy, reactivity, proactivity,
adaptability, coordination and emergence. In this survey,
we include musical agents that implement communica-
tion but do not implement machine listening. However,
we exclude musical agents that solely analyse music, and
purely generative systems4 that have neither perception
capabilities nor communication abilities. Some musical
agents work offline such asMASC 77 while others work

4 Herremans, Chuan, and Chew (2017) recently surveyed purely generative
systems from a conventional music perspective.
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Figure 2. The nine dimensions of our musical agents typology.

online such as the Contuniator 50 and the Voyager 11 .
There are also musical agents that learn offline and gen-
erate online such asMASOM 78 .

There is a wide variety of musical agents. We reviewed
78 systems and identified 9 dimensions that form the
typology of musical agents. These nine dimensions are
agent architectures, musical tasks, environment types,
number of agents, number of agent roles, communica-
tion types, corpus types, input/output (I/O) types, human
interaction modality (HIM). This typology is available in
Figure 2 and Table 1.

(1) Agent architectures: Our typology of musical
agent architectures (Figure 2) is based on well-
known agent classifications in MAS and Artificial
Intelligence literature. On the top level of the musi-
cal agent architecture typology, we classify musical
agent architectures using three broad types of agent

architectures: cognitive, reactive, and hybrid (Rus-
sell Norvig, 2010; Weiss, 2013; Wooldridge, 2009).
Under the agent types, we use architecture model
paradigms as another level of categorisation. This
classification of agent architectures and model
paradigms also serves as the base along which we
discuss our survey of musical agents, and the details
on each agent architecture type are given in the
corresponding sections.

(2) Musical tasks: Musical agents partially or com-
pletely automatise musical creative tasks. So far, we
identified 12 different musical tasks implemented by
musical agents (Figure 2):
– Composition: The artefacts of composition

are sets of symbolic instructions in the case
of musical scores, or audio files in the case
of fixed-media works in electroacoustic music
or acousmatic music. For example, Coming
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Together:Freesound 25 is a system that gener-
ates soundscape compositions.

– Assisted composition systems recommend
musical ideas to composers by automatising any
sub-tasks of musical composition. For exam-
ple, MASC 60 implements Affective Com-
puting with a MAS to recommend melodies
to composers. Also, several composers used
OMAX 54 to recombine and transformmusical
material for composition tasks.5 .

– Interpretation: Performers interpret a set of
musical instructions to produce sounds or gen-
erate audio, which we refer to as interpre-
tation tasks. For example, IMAP 36 evolves
different interpretations of the same musical
phrase using a MAS. Interpretation tasks can
also appear in the musical tasks of symbolic
(notated) music.

– Improvisation:We can break down the impro-
visation task into real-time distributed compo-
sition and real-time interpretation tasks. For
example,MASOM 78 performs free improvisa-
tionwith or without software and human agents
in the context of experimental electronic music.
Moreover, musical agent improvisation is also
referred to as machine improvisation.

– Accompaniment tasks incorporate following
and supporting a leading performer or musical
part. For example, Virtualband 15 follows the
eventfulness of a performer’s audio and gener-
ates rhythm, chord progressions and bass parts.
Accompaniment task can appear in composi-
tion, interpretation and improvisation tasks.

– Melody, rhythm and harmony generation
tasks appear as sub-tasks of composition,
assisted composition, interpretation and impro-
visation.

– Continuation consists of having a musician
play or improvise, and the system taking over
once the musician stops. For instance, the Con-
tinuator 50 is a musical agent that carries on a
musical phrase played by a human performer in
the style of the human performer.

– Style imitation: Given a corpus C = C1, . . . ,
Cn representative of style S, style imitation is to
generate new instances that would be classified
as belonging to S by an unbiased observer (typ-
ically a set of human subjects). For example, the
Audio Oracle 58 is a musical agent that uses

5 Musical examples of OMAX in practice can be found
at http://repmus.ircam.fr/omax/home

machine listening to imitate the style of another
performer.

– Arrangement: The selection and temporal
ordering of musical material are the main tasks
of musical arrangement. We differ arrangement
from instrumentation which is the assignment
of parts of the music to specific musical instru-
ments. In the case ofmusical agents, we encoun-
tered only one system, the fourth version of
Coming Together 25 that implements arrange-
ment.

– Curation differs from arrangement. Curation
is the selection of agents to perform whereas
arrangement is selecting and ordering musi-
cal material. For example, ParamBOT 27 is a
musical agent that curates a selection of musical
agents.

These musical tasks are neither mutually exclusive
nor independent. For instance, a composition task
may include sub-tasks of melody, rhythm and har-
mony generation as in the case of Inmamusys 2 . In
contrast, Coming Together:Freesound 24 also imple-
ments composition tasks, and yet, it does not include
any of the sub-tasks ofmelody, rhythm and harmony
generation.

(2) Environment types: The literature considers three
types of environments in musical agent systems.
First, the real-world environment is the sound
medium where an agent listens to the sum of all
sounds generated by all agents. For example, in a duo
setting, Voyager 11 listens to the human performer
and outputs audio to the real-world environment so
that the human performer can hear. There are three
types of agents in real-world environments: physi-
cal, visual and sonic. Physical agents in real-worlds
are musical robots, and visual agents apply visualisa-
tion of artificial agents.Wementioned that we do not
cover robotic and CGI agents in this survey and we
only cover sonic software agents that listen to either
audio or symbolic music input. Furthermore, there
are two sub-categories of real-world environments:
open-world and close-world. Open-world environ-
ments allow human or software agents to enter
and leave the environment during the generation
stage whereas close-world environments do not. For
example, Voyager 11 , Odessa 16 and MASOM 78
listen to the real-world and allow human or software
agents to enter and leave the environment.
Second, simulations of physical environments are
virtual environments. In the literature, musical agent
architectures utilise a virtual environment in three
ways to generate audio: the virtual location of an
agent, the spatial interactions between agents in the
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virtual space, and an agent’s interaction with the
virtual environment such as finding virtual foods.
For instance, the agents in Shoals’ 44 are situated
in a virtual environment where they consume vir-
tual foods. The system generates audio by sonifying
the consumption of food. Also, the agents can cre-
ate groups by communication through spatial inter-
actions in Shoals. Third, the real world environ-
ment affects the virtual ecosystem in hybrid envi-
ronments. For example, the video input in Petri 38
generates attraction points in the virtual environ-
ment. The agents try to move towards these attrac-
tion points in the virtual environment and the loca-
tion of agents create the audio output. Moreover, the
following properties of MAS environments are also
applicable to musical agent environments (Russell
Norvig, 2010):
– Fully observable vs. partially observable: An

environment is fully observable if an agent can
perceive the environmental properties that are
relevant to the choice of action.An environment
is partially observable if an agent has no capa-
bilities to perceive. For example, an agent in the
system 35 perceives only one agent at a time
although there aremultiple agents in the system.

– Deterministic vs. stochastic: An environment is
deterministic if the next state of the environ-
ment only depends on the previous state of the
environment and the actions of the agents in the
environment, such as the environment of Beat-
bender 20 . Non-deterministic and partially
observable environments are called stochastic
environments. There are two types of stochastic
environments: stationary and non-stationary.
In stationary stochastic environments, there is
only one stochastic model and the model does
not change. For example, the probability distri-
butions inVirtualband 15 does not change dur-
ing the performance. In non-stationary stochas-
tic environments, the stochastic model changes.
TheContinuator 50 is an example of an agent in
non-stationary environment because the agent’s
stochastic model, that is the Markov model,
changes continuously.

– Episodic vs. sequential: During each episode,
an agent has a percept input and generates an
action output. In an episodic environment, the
current episode of an environment is indepen-
dent of the previous episodes. For example, each
time GenJam 28 starts playing a chorus, the
solo is independent of the previous choruses’
solo. In a sequential environment, the current
episode depends on the previous episodes. For

instance, the musical agent applications with
the first or higher order Markov Models have
sequential environments.

– Static vs. dynamic: An environment is static if it
does not change while an agent is deliberating,
else it is dynamic. An example of dynamic envi-
ronment is the virtual environment in Petri 38
because the attraction points in the virtual envi-
ronment change independently.

– Discrete vs. continuous: An environment is dis-
crete if it has a finite number of distinctive states,
and continuous if the environment has an infi-
nite number of distinctive states. The applica-
tions with symbolic music representation have
discrete environments when the parameters are
discrete, such as pitch values in MIDI. In com-
parison, an audio environment is continuous.

(3) The number of agents: We group musical agent
systems in two categories with reference to the
number of agents included: mono-agent and multi-
agent. Mono-agent systems include only one musi-
cal agent whereas MAS have many. Although we
approach human performers as agents, we only
include software agents in this categorisation. Also,
we present the interactions of musical agent systems
with humans in the Human Interaction Modality
(HIM) dimension. Human performers can play with
a mono-agent system. For example, the Continua-
tor 50 is a mono-agent system in a duo setting with
a human performer. MAS in which all the agents
share the same architecture are said to be a homoge-
neousMAS. For example,MASOM 78 has a flexible
homogeneous architecture that allows the user to
start more than one MASOM agent for a live per-
formance. A musical agent system is a heterogeneous
Multi-agent system if there are agents with differ-
ent architectures. For example, Cypher 10 is a het-
erogeneous Multi-agent system with multiple agent
architectures.

(4) The number of agent roles: All agents focus on
the same task in single-role systems. In comparison,
there are different roles that agents can take inmulti-
rolemusical agent systems. For example, there is only
one type of agent architecture in iME 48 , and agents
can take the roles of either listener or player in an
episode. Agents in iME can change their roles every
episode.

(5) Communication types: There are three types of
communication in musical agent systems: through
the environment, via messages and hybrid. First,
through the environment communication is related
to the notion of stigmergy. Stigmergy is the indirect
coordination through the environment (Heylighen,



JOURNAL OF NEWMUSIC RESEARCH 11

2016). That is, an action of an agent leaves foot-
prints in the environment. These footprints stim-
ulate the agents in the environment. For example,
ants leave traces when they find food in the envi-
ronment (Sumpter Beekman, 2003). Other ants fol-
low these traces to reach the food. Similarly, musi-
cal agents implement machine listening of the real-
world to communicate through the environment.
For example, let’s assume that amusical agent desires
the ensemble to play louder. An agent expresses this
desire by playing louder sounds instead of sending
symbolic messages to the other agents in the ensem-
ble. The other agents interpret this desire by listening
to the real-world environment.
Second, agents that communicate via messages use
pre-defined, system specific messages. The develop-
ers of musical agents come up with protocols that
specify the type of messages, and how agents send
and receive messages. For example, the agents in
Inmamusys 2 communicate via messages to gener-
ate compositions as notated symbolic music.
Third, both of these methods are used in the hybrid
communication. For instance, Indifference Engine 5
communicates through environment by listening to
a human performer and generating audio, while the
agents in the system communicates through sys-
tem specific messages such as pitch, volume, speed,
tensionCurve, and confidence.
InMAS, the communication between agents includes
negotiation, bargaining and argumentation (Weiss,
2013). An agent’s behaviour can be cooperative or
competitive. For example, playing chess is a compet-
itive behaviour whereas distributed problem solving
is cooperative. Musical agent implementations are
mostly cooperative given that the nature of mak-
ingmusic is cooperative. Nevertheless, there are also
examples of systems with competitive agents. For
example, agents create social groups in Shoals 44 ,
and these groups compete with each other to find
and consume food in a virtual ecosystem.

(6) Corpus types:A corpus is a set of symbolic music or
audio samples in the case of musical agents. Musical
agents use a corpus as amusical memory and knowl-
edge. We group the corpus types of musical agents
in three categories: symbolic, audio and hybrid. A
symbolic corpus is a set of symbolic representations
of music. In most of the cases, the symbolic rep-
resentation uses MIDI. An audio corpus is a set of
audio samples. The samples in an audio corpus can
range from grains of audio samples to full length
music pieces. A hybrid corpus include a set of audio
files with any kind of symbolic data. For example,
MASOM 78 includes a hybrid corpus, that is, a

set of audio segments with 18 dimensional feature
vectors.

(7) Input/Output types: We differentiate corpus types
from I/O types. Corpus types are related to the learn-
ing and generation. However, the I/O types clarify
how an agent listens and outputs to the environment.
We observed three types of I/O in musical agents:
audio, symbolic, or hybrid. The audio I/O is the audio
signal perceived and generated by the agents. The
agents with the symbolic I/O use a symbolic repre-
sentation of music, that is, in most cases the MIDI
protocol. Agents with the hybrid I/O use both audio
and symbolic I/O.

(8) HIM: Three types of Human Interaction Modality
(HIM) emerge in musical agents: systems learning
from humans, systems controlled by humans, and
systems playing with humans. Some musical agent
systems learn the style of a human performer or
composer as in the case of the Continuator 50 and
MASOM 78 . Some systems include global vari-
ables that can be controlled by humans as in the
case of Kinectic Engine 21 and HARP 71 . Many of
the musical agents, such as the systems focusing on
machine improvisation in Section 6.1, can perform
with human performers.

In the following sections, we define the agent architec-
tures, groupmusical agents by their architecture type, and
give details about each system.

4. Cognitive musical agents

Gomila Müller (2012) define a cognitive system as one
that ‘learns from individual experience and uses its
knowledge in a flexible manner to achieve its goals ’. Six
aspects of cognitive systems are dealingwith an uncertain
world, learning from experience, understanding knowl-
edge, flexible use of knowledge, autonomy and social
abilities. Cognitive agents inherit the properties of both
cognitive systems and MAS. Cognitive models, in com-
parison, are software architectures that specificallymodel
human cognitive processes. Some examples of cognitive
models proposed in Cognitive Science are Ymir, ACT-
R, Soar, NARS, OSCAR, AKIRA, CLARION, LIDA and
Ikon Flux (Thórisson Helgasson, 2012). We study cog-
nitive musical agents in three categories in the following
sections.

4.1. Cognitivemusical agents with knowledge
representation

A classic paradigm for cognitive agent architectures is
Logic-based agents (LBAs) (Weiss, 2013;Wooldridge, 2009).
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LBAs perceive their environment by building and main-
taining symbolic representations. The environment is
represented as a set of assertions. LBAs reason about
the environment using a set of logical rules and apply
theorem-proving using the knowledge.

A recurrent theme in cognitive musical agents is the
implementation of knowledge representationwith a rule-
based agent architecture. Inspired by music theory, the
authors come up with a knowledge representation, and
rules of their musical system. Alternatively, the agents
generate logical assertions and rules using a corpus. In
the following, we survey three systems with knowledge
representations.

Wulfhorst, Nakayama, and Vicari (2003) studied 50
popular songs to devise a table of possible harmonic
transitions. Vicari, Nakayama, Wulfhorst, Costalonga,
and Miletto (2005) continue this work by presenting a
multi-agent system with multiple agent models, called
Virtual Musical Multi-agent system, VMMAS 1 . The
application of this system is online music accompani-
ment. Seven types of agent models appear inVMMAS 1 :
Cautious (activates only when the agent has a high met-
ric and harmonic confidence degree), Leader (simulates
other agents), Flexible (adapts to the metric changes),
Inflexible (does not adapt to the metric changes),
Persuasive (tries to stabilise around its ‘ideal’ tempo),
Improvising (proposes harmony progressions) and Lyric
(proposes tempo changes). The authors state that agent
models use ‘fuzzy cognition’; however, the authors have
concealed how the fuzzy logic is implemented.

The second system, Inmamusys 2 concentrates
on a two-layer multi-agent system (Delgado, Fajardo,
&Molina-Solana, 2009). All agents in Inmamusys include
a knowledge representation. In the first layer, Inma-
musys 2 chooses a composer agent that decides the
number of voices, the timbre of the voices, tonality and
the number of measures. In the second layer, there are
four types of agent models: melody, harmony, accom-
paniment and drums. The system allows a degree of
human control through a graphical user interface (GUI).
In this interface, the user can choose the desired emotion,
instruments andduration of the composition.However, it
is not disclosed how desired emotions are implemented.

The third system is a generative multimedia system 3
with affective computing (Bizzocchi et al., 2015). This
system generates soundscape, moving images and music.
The affect estimation uses Russell (1980)’s two dimen-
sional (valence and arousal) circumplex affectmodel. The
system design includes three modules: Re:Cycle, AuMe
(Audio Metaphor) and Musebots (see Figure 3). The
Re:Cycle uses a corpus of moving images with valence
and arousal tags. Re:Cycle module sends the desired
valence and arousal values to AuMe andMusebots. Using

Figure 3. The block diagram of the system 3 in Table 1 (Bizzoc-
chi, Eigenfeldt, & Thorogood, 2015).

a machine learning model (multivariate regression)
for affect estimation in soundscape recordings, AuMe
chooses soundscape recordings with the desired valence
and arousal values. The Musebots module maps valence
(pleasantness) and arousal (eventfulness) to multiple
musical parameters such asmusical consonance, melodic
movements and rhythm.

4.2. Cognitivemusical agents with BDI architecture

One of the most common cognitive agent architec-
tures is the Belief-Desire-Intention (BDI) architec-
ture (Wooldridge, 2009). The BDI architecture6 applies
practical reasoning. Practical reasoning is the goal-
directed selection of actions. There are two aspects
of practical reasoning: deliberation and means-end rea-
soning. Deliberation is the process of deciding what
to achieve. The outputs of deliberation are intentions.
Means-ends reasoning is how to achieve the goal that is
set by the deliberation process. The result of means-ends
reasoning is a plan.

An agent uses its beliefs to represent the state of the
world and the know-how of the agent. Beliefs are dif-
ferent from the knowledge. Beliefs can be wrong and
they are non monotonic. Internal or external perception
update beliefs. Internal perception is the perception of
the agent’s own state whereas the external perception is
the perception of the environment. Reasoning can also
update the beliefs of an agent. There are two families of
reasoning: perfect and bounded rationality. Perfect ratio-
nality is where we assume the logical omniscience of the
agent. In comparison, bounded rationality is the notion
of accepting the finite nature of the resources available for
reasoning.

While beliefs are informational attitudes, the desires
are motivational attitudes. Desires are not necessarily
consistent or achievable. Deliberation is the process of
choosing which desires are to be pursued according to
the current beliefs. The agent generates intentions by
applying a selection function to its desires.

6 Wooldridge (2009) provides the psuedo code of the BDI agent control loop.
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Intentions are desires that the agent is committed to
make happen. Agents determine ways to change the state
of the environment so as to make the intentions true.
Intentions provide a filter for the adaptation of the other
intentions thatmust not conflict. Agents track the success
of their intentions. Agents are inclined to try again if the
attempts to satisfy an intention fail. That is, the intentions
of agents are persistent. Agents believe that their inten-
tions are possible and intentions are not closed under
implications.

Means-end reasoning is to determine how the inten-
tions are achieved. Agents generate a sequence of actions,
that is, a plan. Plans can be deterministic and non-
deterministic.Means-end reasoning generates or selects a
plan to be executed as an attempt to achieve the intention.

We found three musical agent implementations that
use BDI architecture explicitly. The first system 4 , pre-
sented as a part of the Coming Together musical agent
series, explores the idea of negotiation between musical
agents (Eigenfeldt, 2010). The communication is hybrid
and through communication, the agents generate their
own goals and create plans to achieve these goals. An
agent in this system desires to create a repeating phrase
that is updated by the communication between agents
and the changes in the environment.

Indifference Engine 5 is the second musical agent
application including BDI architecture with the hybrid
communication (Eigenfeldt, 2014). Each agent gener-
ates an intention graph for pitch, volume and speed at
the beginning of performance. The average of these
three graphs is the tensionCurve of an agent. Indiffer-
ence Engine can run as amono-agent system,multi-agent
system and multi-agent system including a human per-
former. The data of agents are globally shared; however,
the intentions of agents are private. The agents also nego-
tiate their intentions and argue on choosing a leader. Each
agent follows the leader with a weight parameter called
confidence. The confidence parameter is set by the prox-
imity of the agent to the mean of other agents’ pitch,
volume and speed parameters. The closer an agent is
to the mean, the higher its confidence is. Moreover, the
agents choose to either join the multi-agent ecosystem or
follow the human performer. Also, the agents negotiate
on which audio corpus to use at the beginning of perfor-
mance. Themusical agents in this systemgenerate sounds
with concatenative synthesis using CataRT.

The third system with the BDI architecture isMUSIC-
MAS 6 (Navarro, Corchado, & Demazeau, 2014;
Navarro et al., 2016). The focus of this study was
assisted composition and style imitation. MUSIC-MAS
generates harmony progressions using organisation-
oriented MAS design to introduce flexibility and scal-
ability to the system design. MUSIC-MAS implements

a client-server based MAS architecture proposed by
Ferber, Gutknecht, andMichel (2003) including multiple
agent types (Figure 4). ProviderAgent assigns certain
roles to ClientAgents. MUSIC-MAS has five client agent
roles: composer, evaluator, interface, data supplier and
control. Composer agents implement BDI architecture to
generate harmony progressions. Evaluator agents score
the generated progressions using a fitness function that
includes harmony progression constraints. These con-
straints are style specific and the authors state that the
system is flexible enough to imitate any style by changing
the set of constraints in the fitness function. The inter-
face agents handle the interaction with the user. The data
supplier agents collect and store all the data generated
by the system. The control agents are responsible for the
communication and coordination of the agents.

4.3. Cognitivemusical agents with cognitivemodels

Maxwell et al. (2009) propose the framework called
Hierarchical Sequential Memory of Music (HSMM) 7 .
HSMM is build upon the Hierarchical Temporal Mem-
ory (HTM) (George, 2008). The MuMe applications
of HTM are recognition, generation and continuation.
FollowingHTM,Maxwell, Eigenfeldt, Pasquier, andGon-
zalez Thomas (2012) present MusiCOG 8 , a cog-
nitive musical agent generating monophonic melody.
MusiCOG is a mono agent system that applies the
MuMe tasks of continuation and assisted composition.
MusiCOG 8 listens to and learns from a sequence of
MIDI data. MusiCOG consists of four modules: per-
ception module, working memory, cueing model and
production module (Figure 5). The perception mod-
ule implements segmentation as well as the genera-
tion of monophonic MIDI streams from a polyphonic
input. Working memory is the short term memory
that implements grouping of similar patterns. The cue-
ing model is MusiCOG’s long term memory which
learns the hierarchical structures between patterns in the

Figure 4. Anexample of role assessment inMUSIC-MAS (Navarro,
Corchado, & Demazeau, 2016).
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Figure 5. The architecture of MusiCOG (Maxwell, Pasquier,
& Eigenfeldt, 2009).

working memory. Finally, the production module gen-
erates monophonic MIDI output using the knowledge
representation inMusiCOG.

In regards to communication between musical agents,
Murray-Rust and Smaill (2005), Murray-Rust, Smaill,
and Edwards (2006), Murray-Rust (2008), Murray-Rust
and Smaill (2011) proposed the Musical Acts theory 9
that was inspired by the Speech Acts theory (Kim-
ball, 1975).Murray-Rust and Smaill (2011) propose three
qualities of Musical Acts:

• Embodiment through the production of music, . . .
musical acts must have a manifestation in music.

• Intention is what differentiates a musical act from
general musical playing. A musical act should have
perlocutionary force.

• Intelligibility is necessary for a successful act; if it is
not understood, then it will fail to change the world,
as other musicians will fail to react to it.

The information in Musical Acts is generated by descrip-
tors. A descriptor is a mapping from a facet (an aspect of
music, such as melodic contour, chord, time signature)
to a value. An analyser generates a descriptor in Musi-
cal Acts Theory. The theory also includes a set of per-
formative actions (inform, confirm, disconfirm, extend,
and alter) to create a dialogue between musical agents.
Murray-Rust and Smaill (2011) also present a MAS with
Musical Acts using a symbolic representation of music.
The agents in the MAS were trained on the piece Canto
Ostinato by Simeon ten Holt. The agents analysed levels,
slopes and patterns for note timing, length and loudness
features using the symbolic music.

5. Reactive musical agents

Reactive agents respond to the changes in the environ-
ment without the explicit symbolic reasoning of the type

carried out by cognitive agents. In MAS, there are two
types of reactive agents architectures: reflex and reactive.
Reflex agents do not have any internal states. The per-
ceived states of the environment, percepts cause actions
of reflex agents. Hence, the simplest agent architecture is
a reflex system, that is a function that maps percepts to
actions:

f : P → A,

where f is a function, P is a set of percepts andA is a set of
actions. Unlike reflex agents, reactive agents have internal
states. These internal states are functional as opposed to
cognitive.

A well-known reactive agent architecture is the Sub-
sumption architecture (Brooks, 1986). The Subsumption
architecture is hierarchical with multiple layers. Higher
layers have a higher priority and vice versa. Outputs of
higher layers can restrain, alter, or block outputs of lower
layers.

Moreover, Brooks (1995) discusses four key terms of
the Artificial Intelligence and MAS research: Situated-
ness, Embodiment, Intelligence and Emergence. Situated-
ness proposes that the intelligence is situated in the inter-
action with the environment, responding to percepts in
a timely fashion, rather than reasoning about the envi-
ronment through a symbolic representation. Embodi-
ment is the idea that an agent is an ‘embodied intelli-
gent agent’ and intelligence is situated in the real world
through physical grounding. Brooks (1995) claims that
the interaction between an agent and its environment is
the determinant of the intelligence of an agent. Therefore,
intelligence emerges as a result of the interaction between
the behavioural rules of the agent and its environment.

In the following, we survey 39 systems with reac-
tive musical agents. We group these systems according
to their environment types, reactive musical agents in
real-world and virtual environments. Reactive musical
agents in real-world environments appear in two cate-
gories: rule-based reactivemusical agents and agentswith
Evolutionary Computation (EC). In the reactive musi-
cal agents in virtual environments, musical MAS sim-
ulate virtual environments to conduct a musical task.
We group the reactive musical agents in virtual envi-
ronments into two categories of multi-agent simulations
with EC and multi-agent simulations with ecosystemic
approaches. We differentiate the reactive musical agents
that use EC to generatemusicalmaterial from themusical
MAS that use EC to evolve agents. The systems that we
cover in Section 5.1.2 implement EC to generate musi-
cal material within a reactive agent architecture in real-
world environments. We cover Multi-agent simulations
that utilise EC to evolve agents in virtual environments
in Section 5.2.1.
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5.1. Reactivemusical agents in real-world
environments

We group musical agents in this category in two: rule-
based reactive musical agents, and reactive musical
agents with Evolutionary Computation.

5.1.1. Rule-based reactivemusical agents
A recurrent theme in reactive musical agents is the appli-
cation of music theory rules in the design of musical
agents. Rule-based systems apply percept-to-action func-
tions as IF-THEN conditionals. In most cases, these rules
are strictly set by the designer of the system. We start
our survey of rule-based reactive musical agents with the
systems automatising the improvisation tasks.

One of the early musical agent is Cypher 10 , a
rule-based reactive musical agent working with symbolic
representation of music (Rowe, 1992). Cypher is a multi-
role, heterogeneousMulti-agent system.Cypher is also an
example of holonic Multi-agent systems. In holonic sys-
tems, an agent is made of other agents (Minsky, 1986).
In Cypher, the agents are hierarchically arranged and
connected. At the highest level, there are two types of
agents, listener and player agents. First, listener agents
behave similar to the perception modules, analysing the
input data and providing high-level musical information
to player agents. The listener agent is made of the regis-
ter agent, the dynamic agent, the density agent, the speed
agent, the duration agent and the harmony agent. Each
of these agents implement a particular Music Informa-
tion Retrieval (MIR) task. Second, player agents gener-
ate musical output in three ways: transformation of the
input data (symbolic representation of music), triggering
events by using the information provided by the listener
agent, and choosing from a corpus of musical events.
Rowe (1992) also mentions that the listener agents can be
used as critics that analyse the output generated by player
agents. Listener agents as critics report the success of pre-
vious events to player agents. This application of critic
agents is similar to the reinforcement learning in statis-
tical sequence modelling algorithms (see Section 6.1).

Voyager 11 is one of the well known musical
agents (Lewis, 2000). Lewismentions that the first version
of Voyager goes back to 1986. The global behaviourmode
of Voyager determines timbre, volume range, microtonal
transposition, tempo, tactus (underlying, inner pulse),
note probability distributions, pitch interval range, inter-
onset time intervals, pitch set and pitch generation
algorithm. Voyager has 64 MIDI-controlled, mono-
phonic player agents. Depending on the global behaviour
mode, Voyager groups or separates these 64 agents. Voy-
ager changes the global behaviour mode every 5–7 s.
The system includes 15 pitch generation algorithms and

150 microtonal pitch sets. Moreover, setresponse mod-
ule handles the responses to the input data by modifying
the parameters set by the setphrasebehaviour module. As
of 2017, Voyager still performs in various venues. As a
part of the Musical Metacreation concert at ISEA2015
in Vancouver, BC, Canada, Voyager improvised with two
human performers playing prepared piano and clarinet.

Band-out-of-a-Box, Bob 12 is another one of the early
reactive musical agents. Bob improvises with a human
performer in the context of jazz and blues (Thom, 2000a,
b, 2003). Bob focuses on the generation of melodies,
specifically solo trading in jazz improvisation. In solo
trading, musicians improvise one by one for a number
of measures. The number of measures is an integer divi-
sion of the total number of measures in a chorus. In
the jazz context, it is common to trade solos in four or
eightmeasures. Bob improvises with a human performer,
along with a fixed musical accompaniment (Figure 6).
Bob utilises trees to represent ameasure, and implements
histograms of the pitch class, intervals and melody direc-
tion to learn the playing modes of the human performer.
The real-time generation of musical sequences is a map-
ping that associates the histogram of feature vectors to
the playing modes of Bob. Bob generates these playing
modes during the learning, and stores them as a knowl-
edge representation. However, these playing modes do
not provide a temporal pitch sequence. To generate a
melody, Bob implements a first-order Markov chain in
which the states consist of an absolute pitch value and a
set of histograms. Thom (2003) also demonstrates Bob’s
performance by training two different agents on Stéphane
Grappelli and Charlie Parker solos.

Adaptive Real-time Hierarchical Self-monitoring
(ARHS) 13 emphasises timbre in the reactive musi-
cal agents (Hsu, 2010). The system includes three

Figure 6. Bob’s system architecture Thom (2003).
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modules that are Sensing, Synthesis and Processing. The
three module architecture of AHRS resembles Blackwell
et al. (2012) PQf musical agent framework in which P
is the machine listening and analysis; Q is the synthesis
and f implements reasoning and generative functions.
We further discuss the PQf approach in Section 8.4.
The sensing module of AHRS includes pitch, amplitude,
loudness, tempo, auditory roughness and timbre analysis.
The sensing module outputs a performance mode that is
updated every second. Then, the processing module uses
the performance mode to choose sounds. There are two
features in the processing module: short-term respon-
siveness and long-term adaptivity. The system initiates
short-term responses using the Sensing module output
and fuzzy logic. Short-term responses are beginning a
phrase, ending a phrase and changing the timbre. The
long-term adaptivity implements fuzzy sound selection
based on 8-second windows of the Sensing module out-
put. The Synthesis module includes one or more agents.
The Sensing and Processing modules set global variables
for these agents. Agents generate parameter curves to
change pitch and timbre characteristics.

ListeningLearning (LL) 14 is a system that per-
forms with humans in the context of free improvisa-
tion (Collins, 2011). The listening algorithm has three
modules: rhythm tracking, silence detection and timbral
state clustering (Figure 7). The rhythm tracking mod-
ule calculates onset detection, periodicity and inter onset
interval. Also, the rhythm tracking module differenti-
ates free time playing from steady metric tempo. The
silence detection module utilises perceptual loudness.
LL clusters timbral states using the audio feature statis-
tics of cosine basis energy, cosine-wise inter-frame flux,
RMS amplitude, spectral centroid, spectral irregularity
and spectral energy. The author normalises six features
of timbral state clustering using the adaptive distribution
model. The adaptive distribution model uses the statis-
tics of feature vectors to implement a normalisation that
is similar to histogram equalisation in Computer Vision.
LL implements the timbral state clustering using online
k-means clustering with the Euclidian distance metric to
follow the timbral choices of the human performer. LL
includes ten agents to generate output. Each agent corre-
sponds to 1 of 10 timbral states. Only one agent is acti-
vated at a time depending on the timbral state calculated
by themachine listeningmodule. Each agent has a unique
set of parameters for audio synthesis and processing
modules. Each agent has 4 audio synthesis and processing
modules: sample based drum kits, a physical modelling
synthesis of the vocal tract, a 4-voice subtractive synthe-
sis and 50 different audio effects. Collins (2011) states
that using ten agents provides the system the diversity

of responses required for free improvisation with human
performers.

Virtualband 15 is a MAS in which musical agents
imitate playing styles of musicians (Moreira, Roy, &
Pachet, 2013). An agent learns from recordings of amusi-
cian to imitate the style of the musician. Each agent is
also provided with a lead sheet including the chord pro-
gression during learning. Hence, agents are also aware
of the harmonic content. Two types of agents appear in
Virtualband: master and slave. Slave agents follow the
master agent’s eventfulness. The master agent can be a
human performer or a software agent. The slave agents
have a hybrid corpus including audio excerpts and the
audio feature distributions of these excerpts. The dura-
tion of excerpts is set to one beat or one bar before the
learning. In the generation mode of Virtualband, a slave
agent generates output by using concatenative synthesis
and chooses audio files to play by following the eventful-
ness of the master agent. Slave agents conduct the follow
role using two mappings: the mapping between audio
feature distribution of the master agent and the audio
feature distribution of a slave agent, that is, feature-to-
feature (f2f) mapping. f2f uses percentile function to
map between two feature distributions. The authors also
present case examples of jazz improvisation, interactive
mash-ups and beatboxing with Virtualband. The advan-
tage of Virtualband is that the symbolic corpus is not
necessarily tied with the audio corpus. That is, we can
use the same feature distributions with different audio
corpora. Examining the example performances of Virtu-
alband,we observe that the algorithm is successful on jazz
improvisation. However, it is not clear why the authors
choose the percentile based f2f mapping. In the exam-
ples of Virtualband, agents are trained on a small corpus,
performances of one or two songs.

Odessa 16 is a reactive musical agent based on the
Subsumption architecture (Linson, Dobbyn, Lewis, &
Laney, 2015). Odessa is a mono-agent system that plays
improvised music using audio input and MIDI output.
Arranged from the lowest to the highest layer, there are
three layers in the architecture: play, adapt and diverge.
The play layer generates theMIDI output. The adapt layer
alters the output of the play layer according to the input
when Odessa listens to other performers using machine
listening algorithms for pitch and loudness estimation in
the adapt layer. The diverge layer constructs higher level
musical section changes.

Following the systems focusing on the improvisation
tasks, we present five systems generating rhythm: 17 ,
VirtuaLatin 15 , DrumTrack 19 , BBCut2 20 , Kinectic
Engine 21 and BeatBender 22 . Pachet (2000) presents
a rule-based reactive agent 17 that generates rhythm
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Figure 7. The architecture of LL (Collins, 2011).

and harmony progressions. The agents implement two
sets of rules to produce rhythms. The first set of rules
create rhythms from scratch using three rules: empha-
sise strong beat, emphasise weak beat and syncopation. The
second set of rules generate variations of existing rhythms
with three rules: add random, remove random and move
pitch. To generate harmony, the agent applies the same
rules in the vertical dimension (pitch) as opposed to
the horizontal dimension (time). Also, the agents apply
two additional rules (called attraction and repulsion)
in the horizontal dimension (time) to handle harmony
progressions.

Murray-Rust et al. (2005) present another rule-based,
rhythm generating MAS. VirtuaLatin 18 generates tim-
bales accompaniment to Salsa music that is pre-recorded
as MIDI files. VirtuaLatin works offline. The percep-
tionmodule extracts higher level information from input
data on four dimensions: activity, harmonic informa-
tion, rhythmic information and musical section. The
agents select one rhythm from a corpus using the sym-
bolic representation of the song. The agents apply three
more rules to introduce ornamentation: phrasing, chatter
and fills.

DrumTrack 19 is another musical agent generating
rhythm to accompany a human improvisor (Collins,
2005). DrumTrack focuses more on how to track the
tempo of a human performer real-time using machine
listening. Although the architecture of DrumTrack is
reported as rule-based, the details are not presented.

BBCut2 20 is the second version of Collins (2006)
musical agent generating breakbeat. Within our knowl-
edge, the details of the first version are not published.
Breakbeat refers to either a musical section where all
instruments stop and a drum solo begins,7 or the

7 One of the most famous breakbeat sections is the Amen Break, which
is a 4 bar drum break of the song ‘Amen, Brother’ by 1960s soul/funk
band the Winstons. The recording of Amen Break can be found at
http://en.wikipedia.org/wiki/Amen_break.

Figure 8. The structure of BBCut2 (Collins, 2006).

electronic music genre in which breakbeat drums are
sampled tomakemash-ups. BBCut2 usesmachine listen-
ing techniques to analyse an audio signal and implement
beat tracking and segmentation (Figure 8). The agent has
an algorithmic composer module. The rules in the algo-
rithmic composer module include generative streams of
events, static sequences, shuffling the order sequences,
weighted choices, nested patterns and more.

Eigenfeldt (2008) presents the Kinectic Engine 21 , a
rhythm generator with multiple reactive musical agents.
The Kinectic Engine includes two types of agents: con-
ductor and player. There is only one conductor agent,
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and this agent handles user interaction, identification of
player agents, communication betweenplayer agents, and
sending the tempo to the player agents. Eigenfeldt (2008)
implements personality traits to vary the player agents’
behaviours. Personality traits are presets that determine
the density, the amount of rhythmic variation, and tim-
bre of an agent. Player agents decide to play at a certain
time using fuzzy logic. The author proposes two types
of rules to generate rhythms with player agents: den-
sity spread and pattern matching. Moreover, the com-
munication between player agents has two interaction
modes: rhythmic polyphony and rhythmic heterophony.
The player agent decides on the interaction mode by
calculating the rhythmic similarity rating between the
agent’s own output and the other agents’ output. Higher
similarity results in the alteration of generated output to
satisfy rhythmic heterophony. Likewise, lower similar-
ity alters the agents’ generated output towards rhythmic
polyphony. The author develops the Kinectic Engine fur-
ther by introducing Evolutionary Computation to the
system (see Section 5.1.2).

BeatBender models a drum circle with the Subsump-
tion architecture to create emergent musical rhythms
(Levisohn& Pasquier, 2008). Each rule has an antecedent
and a consequent. Antecedents dictate a set of precondi-
tions for a specific rule to be activated. The consequent
is the result of an agent’s actions when a rule is applied.
Each beat, agents decide to play (or not) using their per-
cepts and a set of rules. BeatBender includes four types of
rules:

– Collective: rules that use the total number of active
agents

– Directed: rules that check states of specific neigh-
bouring agents

– Temporal: rules that use the histogram of an agent’s
states

– Undirected: rules that check states of any neigh-
bouring agents.

Following themusical agents applyingmusical tasks of
improvisation and rhythm generation, we continue our
survey with the remaining rule-based reactive musical
agents. Andante 23 is a musical agent framework for
mobile platforms (Ueda & Kon, 2003). The framework is
inspired by the client/server model in MAS. The imple-
mentation rests on Aglets Software Development Kit and
JAVA Sound API. The authors also present a MAS with
agents generating monophonic melodies using different
types of noise such as pink, white and brown noises.
Although the generation is MIDI, there are built in syn-
thesisers that agents can choose from, to generate the
audio output.

Public Space InteractiveWeb-based Composition Sys-
tem (PIWeCS 24 ) is a browser-based multi-agent system
that generates musical compositions (Whalley, 2004).
The system has an audio corpus of Maori instrument
samples. The user can set three variables: unity/variety,
volume and tempo. The interface includes a conversa-
tional model of interaction between the machine and
the user. There are four agent types in PIWeCS: recep-
tion, helper, learner and extender. However, the details of
the system architecture as well as the user interface and
interaction model are not disclosed.

Eigenfeldt and Pasquier (2011a) present a unique
application of generative soundscape composition with
MAS including four musical agents, called Coming
Together: Freesound 25 . The system is a part of the musi-
cal agent series called Coming Together. The agents react
on the environment, and also communicate using the
blackboard architecture to choose sounds to play. The
corpus of an agent is labelled by spectral contents and
the metadata tags of voices, animals, water and outside.
There are three types of agent interactions in this sys-
tem: sharing the metadata tags on a shared blackboard,
reacting to the spectral content of the sonic environment,
or both.

The fourth version of the Coming Together series
includes a musical agent 25 that concentrates on musi-
cal arrangement (Eigenfeldt &Pasquier, 2012). The other
agents in the system generate a corpus of musical sec-
tions with symbolic music representation (as MIDI files).
The arranger agent chooses a random musical section
from the corpus, that is, a MIDI file as the first move-
ment. Then, the arranger agent calculates the similar-
ity of the first musical section and the remaining ones
on the dimensions of cumulative density, pitch range
and variation, volume, overall length, specific instrument
presence and harmonic movement. The arranger agent
sorts the remaining musical sections and chooses the
next musical section using Gaussian selection. The agent
repeats this process using the previously selected musi-
cal section. The agent stops when a user-defined duration
has reached.

ParamBOT 27 is a curator agent that generates musi-
cal sections of Moment form (Eigenfeldt, 2016a). Param-
BOT initiates or stops other musical agents to create
distinct musical sections. This implementation explores
Stockhausen’s idea of Moment Form in experimental
music. A musical section in Moment form is free of
the previous and next sections. At the beginning of
each musical section, ParamBOT sets global parameters
of speed, activityLevel, voiceDensity, complexity, volume,
consistency, and pitch; and initiates other musical agents
within the Musebot framework (Figure 9). We introduce
the Musebot framework in Section 8.
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5.1.2. Reactivemusical agents with evolutionary
computation
Evolutionary Computation (EC) is an abstraction of Dar-
winian evolution. EC implements survival of the fittest
to find a solution to a given problem using a popu-
lation of solutions. EC applies the genotype-phenotype
dichotomy. A genotype is a representation of a solu-
tion (phenotype). A fitness function evaluates phenotypes
(solutions) by assigning fitness scores. Genetic opera-
tors, crossover, mutation and reproduction, generate new
solutions called offsprings. These offsprings go through
a selection process to create next generations. An EC
algorithm continues evolving a population until stop-
ping criteria are reached (Sivanandam & Deepa, 2007).
EC has been widely used in optimisation problems
such as synthesiser preset generation (Tatar, Macret,
& Pasquier, 2016). Although the problems in MuMe
research do not necessarily involve optimisation, EC has
also been widely used in the MuMe context (Miranda &
Biles, 2007). In this section, we cover musical agents in
real-world environments that use EC to generate musical
material for the agent.

We begin by presenting three systems applying impro-
visation tasks. GenJam 28 is one of the early musi-
cal agent systems (Biles, 1994). GenJam implements
a sub-branch of EC algorithms, called Genetic Algo-
rithms (GAs) to generate melodies. GenJam improvises
JazzMusic using an Interactive Genetic Algorithm (IGA)
that generatesmusical phrases using a symbolic represen-
tation of music (MIDI). In IGAs, the user evaluates and
scores all individuals in the GA population every gener-
ation. GenJam concentrates on jazz improvisation over
a given chord sequence. Learning, breeding and demo
are the three modes of GenJam. In the learning mode,
a human listener gives real time fitness scores to Gen-
Jam’s musical phrases. The listener labels the GenJam’s
current solo with the labels ‘g’ and ‘b’ that stand for
‘good’ and ‘bad’ respectively (Figure 10). In the breed-
ing mode, GenJam implements genetic operators on the
population of musical phrases. GenJam replaces half of
the population every generationwith new offspring using
crossover and mutation. In the demo mode, GenJam
improvises on a Jazz tune, using a chord progression
file. Although Biles (1994) does not present GenJam as a
musical agent, we can analyse the system architecture as a
musical agent, with inputs of chord progression, rhythm
section and human evaluation of the generated phrases,
and with an output of solo jazz improvisation. Biles, who
is also a trumpet player, presented GenJam in numer-
ous concert venues as GenJam being another jazz player
(Biles, 2013).

The following two systems that apply improvisation
tasks imitate the style of human performers using EC:

Figure 9. ParamBOT, a curator agent implemented using the
Musebot framework in MAX (Eigenfeldt, 2016a).

Figure 10. The block diagram of GenJam (Biles, 1994).

the system 29 and Frank 30 . Yee-King (2007) study
comes forwardwith a unique implementation of evolving
timbres, rather than evolving symbolic representations
of music. Yee-King (2007) presents a reactive musical
agent 29 for live performances with human perform-
ers. This study also implements IGA with the Java pro-
gramming language and embeds SuperCollider’s scsynth
framework for sound synthesis. The agent records the
pitch and amplitude information of the live input to
its memory to imitate the improvisation of other per-
formers (Figure 11). The implementation includes two
audio synthesis techniques: Additive Synthesis and Fre-
quency Modulation (FM) synthesis. A control data of
pitch and amplitude provided by the memory of the
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agent manipulates the parameters of these synthesisers.
The IGA optimises the timbre of the audio synthesis to
match the agent’s timbre to the other performers. The
author presents the initial results of this system, without
recombination in the genetic algorithm. Hence, breeding
is mutation only in the initial experiments. The author
also comments on the improvisational skills of the agent,
saying that the agent has a ‘responsive feel’ with ‘unique
dynamic sound ’.

Frank 30 is a musical agent that evolves lexemes
to imitate a human performer (Plans & Morelli, 2011).
Lexemes are clusters of MPEG7 vectors8 The clustering
method of Frank is k-NN and the cluster locations are the
centroid vectors. EC implementation includes two gen-
ders:male and female. Frank introduces the input frames
as new female individuals to the population. During
reproduction, the offspring gender is set to either male or
female randomly. The authors clarify that female agents
function as critic agents and the implementation of two
genders introduces criticism to the system. The fitness
function uses Euclidian distance between the input frame
vector and an individual with an application of impre-
cise patternmatching withweightmatrices. To implement
imprecise pattern matching, the authors utilise a similar-
ity threshold that female individuals use to choose a male
individual to mate. The authors state that this balances
coherence and novelty in the system. Frank plays back
winner frames from the population.

The next two applications implementMAS with EC to
generate rhythms.Gimenes,Miranda, and Johnson (2005)
implement Dawkin’s idea of memes in reactive musical
agents. The system is called RGeme 31 and the MuMe
application of interest is rhythm generation with sym-
bolic representation. RGeme includes three types of agent
tasks: listening, practicing and composing. The listening
and practicing phases constitute the learning whereas
composing is the generation. Each agent also has an eval-
uation algorithm to choose which music files are used in
the learning tasks. During the learning, agents generate
a Style Matrix in which the rhythmic memes are stored.
The weights of rhythmic memes are determined by the
number of times it is encountered and in which listening
cycles it is encountered. To introduce temporality to the
agent memory, rhythmic memes also lose weight if they
are not encountered in later listening cycles. The authors
also present an analysis of case studies in which agents
are trained with Brazilianmusic composed by Chiquinha
Gonzaga, Ernesto Nazareth, Jacob do Bandolim and Tom
Jobim. The generation phase was not implemented in
this version. In the following years, the generation phase

8 MPEG 7 is a standardisation of low-level feature calculation and thumb-
nailling for multimedia.

was also implemented and this system is used as the
brain for a robotics implementation (Gimenes, Miranda,
& Johnson, 2007). However, we exclude robotics imple-
mentations in this review.

The latest version of Kinectic Engine 21 also applies
rhythm generation with EC (Eigenfeldt, 2009, 2011).
This study aims to generate rhythms that continuously
evolve, rather than rhythms emerging, or appearing.
Eigenfeldt (2009) states that EC provides amusical mem-
ory; and thus, introduces temporality. The system analy-
ses a corpus of rhythms (MIDI files) offline. Moreover,
Kinetic Engine analyses the individuals in the popula-
tion on two musical dimensions: density (the number of
events) and complexity (the degree of syncopation). EC
in Kinectic Engine implements Roulette Wheel Selection,
a well-known selection algorithm in EC (Sivanandam
Deepa, 2007). The author mentions that Kinectic Engine
includes a crossover-like breeding using a single parent;
however, the details of this crossover-like breeding are
not disclosed. The system also implementsmutation. The
population of rhythms is provided to all player agents.
A player agent chooses individuals (rhythm patterns) in
the population using user-set global density and com-
plexity parameters (Figure 12). The player agent utilises a
k-nearest algorithm to find rhythm patters with the user-
given density and complexity values in the population.
Eigenfeldt Pasquier (2009) present artistic implementa-
tions of the system along with the artistic evaluation
of Kinectic Engine, concluding that following versions
of the system should introduce ‘intelligent’ melody and
harmony generation.

Aucouturier (2011) implements a multi-agent soci-
ety 32 to evolve tuning systems. The fundamental fre-
quency and the timbre are the global variables of the
system. The agents include a dissonance calculation for-
mula that is the parameterisation of the experimental
Plomp-Levelt curves.9 Each agent has a tuning system
with the same number of notes. One agent listens (tuner
role) while the other plays (player role). The tuner agent
tunes its notes byminimising the dissonance between the
player agent’s note and its scale. There are two types of
interactions between agents: single note shift and drone
shift. In single note shift, the player agent chooses a ran-
dom note to play and the tuner agent tunes one note that
is chosen randomly. In drone shift, the player agent plays
one note and the tuner agent tunes all notes in itsmemory
byminimising the dissonance. The environment includes
two types of timbres as global variables: harmonic timbre
(where the partials are the integer multiplication of the
fundamental frequency) and compressed timbre (where

9 Given a root note, Plomp-Levelt curves were proposed to calculate conso-
nance or dissonance of any other note to the root note (Plomp Levelt, 1965).
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the partials are spaced narrowly as stated by a geometric
law).

5.2. Reactivemusical agents in virtual
environments

A recurrent theme in musical agent studies is the appli-
cations of self-organising agents that situate in virtual
environments. The authors define the dimensions and
properties of virtual environments. Systems generate
music using the spatial orientation of agents and/or vir-
tual encounters between agents. This data is mapped to
parameters of audio synthesis, or symbolic representa-
tion of music. Hence, the complex behaviours in a virtual
environment create music.

Bown, McCormack, and Kowaliw (2011) propose five
elements of ecosystemic creative domains: space, materi-
als, features, actions and processes. In ecosystemic creative
domains, an agent situates in space, perceives the envi-
ronment using features, performs actions usingmaterials
and the environment changes due to processes. In the fol-
lowing sections, we categorise musical agents in Virtual
Ecosystems in two groups.

5.2.1. Multi-agent simulations with evolutionary
computation
In this section, we cover musical MAS in which the
system uses EC to evolve agents. Following, we present
two implementations of melody generation. Todd and
Werner (1999) present a system 33 that evolves mono-
phonic melodies through agent interactions. The imple-
mentation is inspired by mating calls and singing rit-
uals of wild animals in nature. There are two types of
agents, referred by the authors as male/composer and
female/critic. Male agents have a 32 note melody that
spans two octaves. Each female agent includes a Markov
model transition matrix indicating the probabilities of
note transitions to rate the melodies of male agents. Each
female listens to a subset of randomly selected male
agents. After listening to all male agents in the subset,
female agents choose one male agent to mate. The sys-
tem uses crossover and mutation operators to generate
offspring. The selection process of this system is not
disclosed.

Similarly, LivingMelodies 34 is amusical agent system
that is also inspired by mating calls in nature (Dahlst-
edt & Nordahl, 2001). There are two genotypes in Living
Melodies: sound and procedural genotype. Sound geno-
type dictates how an agent listens to other agents and
how an agent generates sound. Procedural genotype des-
ignates how an agent interacts with and traverses in the
ecosystem. The agents born when two agents mate, but
there are no genders in the system. The system creates

the genome of offspring using crossover and parents’
genome. Moreover, each agent is born with an energy
level. The agents loose energy points as they act within
the environment. An agent dies when its energy level is
below a threshold or a global, preset maximum life span
has been exceeded. There are different configurations of
sound mapping in the system. The agents generate mat-
ing calls as MIDI outputs using the information coded in
their genome and communicating with other agents. The
authors reported that the system can generate recurring
patterns.

Martins and Miranda (2007) presented a system 35
that generates rhythmic phrases. This implementation
focuses on the abstraction of music as a cultural phe-
nomenon driven by social pressure (the system number
31 in Table 1). Although this study includes an A-life
algorithm rather than EC, the ideas of survival of the
fittest, breeding and assessment of a fitness score also
appear in this implementation. The system includes a
population of agents that are identical in the systemarchi-
tecture. The agents situated in a 2D space in which they
interact with each other. Each agent has a memory of
rhythmic phrases. During each interaction, one agent
takes the role of player and the other takes the role of lis-
tener. As a consequence of the interaction between two
agents, each rhythmic phrase of the player agent is given
a popularity score by the listener agent. If the listener
agent recognises a rhythm of the player agent, the listener
agent gives a higher score to that rhythm, or vice versa.
Moreover, the popularity of all rhythms drops by 0.05
after each interaction to introduce aging to the system. A
transformation algorithm is applied to each rhythm that
is shared between two agents during an interaction to fos-
ter novelty in the system. Martins and Miranda (2008)
further analyse the system measuring the similarity of
rhythms. The analysis includes size and complexity of an
agent’s rhythm memory, the similarity and clustering of
agents, lifetime and novelty of generated rhythms. The
authors state that the system exhibits ‘the emergence of
coherent repertoires across the agents in the society’ in
which the size of an agent’s memory can be controlled
using the popularity parameter.

Miranda, Kirke, and Zhang (2010) present a system
that evolves expressive performance of music using an
imitativemulti-agent system, called ImitativeMulti-agent
Performer (IMAP 36 ). The authors define expressive
music performance as the performance strategies that
are not explained in the score, also known as the prob-
lem of interpretation in the context of MuMe. IMAP
uses an imitative model of behaviour transmission, that
is similar to the GA model of behaviour transmission.
In both of these models, the algorithms generate a pop-
ulation of agents whose behaviours are defined by a
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genetic code. The difference between these two mod-
els is that the GA model uses a global fitness function
whereas the imitative model has an non-global fitness
function where each agent has a different fitness func-
tion. In the imitative model of behaviour transmission,
an agent shares its behaviour to the other agents. Agents
evaluate this behaviour using their fitness function, and
if the behaviour scores high enough, the behaviour of
the evaluating agent is updated accordingly. Hence, an
agent has two functions: performance and evaluation.
The parameters of the interpretation task are tempo and
the loudness deviations. The fitness function is rule-
based, implementing five rules of performance curves,
note punctuation, loudness emphasis, accentuation, and
boundary notes. The rules have weights that are particu-
larly set for each agent. These weightsmake agent’s fitness
function unique.

Another implementation that combines biologically
inspired algorithms withMAS is RiverWave 37 (McCor-
mack & Bown, 2009). The researchers explore the idea
of niche construction in ecosystem modelling to create
digital art and music. Niche construction is the phenom-
ena of organisms establishing a more habitable environ-
ment for their offspring, which can also be approached
as a process that precedes the evolution. The cooperation
between agents becomes more prominent since parents
aim for more habitable environments for their offspring.
The musical agent system, RiverWave is a one dimen-
sional, toroidal ecosystem that controls an additive syn-
thesiser. Each agent location determines the frequency of
the oscillator. Each agent has a height variable and agents
affect the height of the neighbouring agents. The height
parameter of an agent is mapped to the amplitude of the
oscillator.

Figure 11. The system architecture of Yee-King’s (2007) musical agent.
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Figure 12. The block diagram of Kinectic Engine version 3
(Eigenfeldt, 2009).

Figure 13. The system design of Petri (Beyls, 2012).

Petri 38 is an interactive audio-visual system that
utilises a virtual environment and the real-world inter-
actions (Beyls, 2012). The reactive agents situated in
a virtual environment while the parameters of vir-
tual environment change with a computer vision input
(Figure 13). A webcam input is processed with a com-
puter vision algorithm that provides five visual features to
the virtual environment. These features define attraction
points in the virtual environment. The agentsmove closer
to these attraction points. There is also a life cycle that
each agent goes through. New agents are created closer
to the attraction points. The reactive agents have gen-
ders and communicate with each other. The communi-
cation between neighbouring agents results in the sound
generation. When agents decide to generate sound, the
location of the agent defines the synthesis parameters.
The 2D virtual environment is mapped to the FM syn-
thesis parameters of carrier frequency and modulation
frequency.

5.2.2. Multi-agent simulations with ecosystemic
approaches
Blackwell Young (2004) present two applications of
swarming in symbolic music generation. Swarming is a
multi-agent behaviour that is inspired by the behaviours
of animal herds like birds, fishes and insects. The
behaviours emerge as a result of four rules: agents try
to move closer to neighbouring agents, neighbouring

agents avoid collisions, all agents try to match velocity
including the direction, all agents try to move towards
attraction points. Likewise, self-organisation has four
components: positive feedback, negative feedback, ampli-
fication of fluctuations and multiple interactions. Swarm
Music 39 and Swarm Granulator 40 are ecosystemic
reactive agents where the agents situated in a virtual envi-
ronment. In Swarm Music, the authors propose a map-
ping between the spatial locations of agents and symbolic
music parameters of pitch, loudness, inter-onset inter-
val, duration, chord number and sequence number. The
authors also propose the idea of using two swarms for
symbolic music generation where the spatial locations of
one swarm are the attraction points of another. In Swarm
Granulator, the agent records the human performer in an
audio buffer while calculating the audio features of the
pitch, amplitude, duration and duration between succes-
sive sound-events. The swarming outputs six parameters
audio buffer transposition, amplitude, duration, the time
between successive grains, grain attack and decay time.

Ando and Iba (2005) propose a musical agent sys-
tem 41 including a virtual environment in the appli-
cation of extended instrument design. Although the
authors claim that the system is a cellular automata imple-
mentation that includes a MAS, the details of the system
design is not disclosed. Ando and Iba (2005) say that the
states of agents in the cellular automata change according
to some pre-defined rules while a human performer plays
a MIDI keyboard. The details of these rules are also not
presented in the study.

McCormack, McIlwain, Lane, and Dorin (2007) pro-
pose a unique idea of using a 2Dvirtual environmentwith
musical agents as a dynamic graphic score that gener-
ates music. The name of this framework isNodal 42 and
available as a commercial software.10 Users create a vir-
tual environment using nodes, edges, node traversals, and
player agents. Users put nodes in the environment and
create connections between these nodes. These connec-
tions are called edges. Player agents traverse the nodes and
edges. Each time a player agent reaches a node, the agent
plays a MIDI note and changes its state variables (lists of
pitch change, note-on, and note duration, MIDI instru-
ment). The authors also give examples of bi-directional
and asymmetric cycles, and cyclic pitch phasing as the
examples of emergent behaviours in Nodal.

OSCAR 43 is a MAS with reactive agents situat-
ing in a virtual environment (Beyls, 2007, 2011). This
application focuses on the problem of generating non-
idiomatic improvisation (a.k.a. free improvisation) with
the symbolic representation of music. This study focuses
on autopoiesis; that is ‘the continuous creation of new

10 http://www.nodalmusic.com/
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answers while facing an unpredictable environment’.
Agents situated in a 2D environment having parameters
of physical position, energy level, distance of communica-
tion, distance of neighbourhood, activation, orientation,
affinities and personality dataset of pitch intervals, dura-
tions and velocities. The system tries to minimise overall
social stress by using affinities between agents. The sys-
tem generates musical output using the histogram of
agent communications on each iteration. An agent that
initiates a musical event generation chooses one of two
methods: contraction, and expansion. Contraction gener-
ates a single musical event using a set of events, whereas
expansion generates supplementary events using a single
source event. The authors also presented three experi-
ments with the systems to show emerging patterns. The
system presented periodic patterns running over longer
durations as well as complex behaviours.

Eigenfeldt and Pasquier (2011b) use Concatenative
Synthesis with an ecosystemic MAS. The authors pro-
posed the idea of generatingmusic through consumption
of virtual food in a virtual environment. The system is
referred as Shoals 44 that is a part of series of gener-
ative music systems, called Coming Together. The sys-
tem uses Concatenative Granular Synthesis with CataRT,
an external library that is available in the visual pro-
gramming language MAX. The real-time audio feature
extraction of audio input creates food in the virtual envi-
ronment that agents situate. The agents can move within
the virtual environment. As an agent finds and consumes
food, the consumption is sonified using CataRT. The
agents are randomly initialised with synthesis parameters
of grain duration, delay between grains, amplitude, off-
set into the sample, phrase length, pause between phrases,
phrase type, output, and with MAS parameters of acqui-
escence (desire to stay at the location of a food source),
and sociability. Agents have a histogram of encountered
food sources. This histogram affects the decision of an
agent’s movement. The audio input is recorded into an
audio buffer when it is not silent. The existence of sound
in the audio input also creates excitement in the vir-
tual environment and the agents start moving at faster
rates. There is also communication between the agents.
When an agent finds a food source, the agent shares the
location of the food source. The agents die if they can-
not locate a food source for a certain time. The death
agents are reincarnated after a variable duration that is
between 5 and 60 s. The agents create social networks by
sending ‘friend requests’ and using the sociability ratings.
The agents can also leave a network to join a bigger net-
work. Eigenfeldt and Pasquier (2011b) stated that even
when the agents find a food source, and the network
becomes static, the social networking still create dynamic
behaviours.

Beyls, Bernardes, and Caetano (2015) presented a
MAS implementation focusing on a cultural phenomena.
The system, earGram Actors 45 is based on the Actor
model (Beyls, 2011) which is a derivation of the Party
Plannermodel (Gold&Maeda, 2007). In the actormodel,
the reactive agents aim to be as close as possible to the
agents that they like (and vice versa) to minimise the
social stress of the society. The actor model works on two
dimension affinity and sensitivity. Affinity is pre-set and
dictates the attraction of an agent towards another. Sensi-
tivity sets a distance threshold to apply affinities of agents.
This simple abstraction of a virtual society creates com-
plex movements of agents in the virtual environment.
This MAS implementation uses a hybrid audio corpus.
The corpus consists of 200 ms long audio samples, and
the samples are mapped to a 2D space using dimen-
sionality reduction on a set of audio features, including
noisiness, pitch, brightness, spectral width and sensory
dissonance. Then, this 2D audio feature space is mapped
to the 2D virtual environment. Hence, the movements of
agents in the environment create musical output with the
concatenative synthesis.

Likewise, pMIMACS 46 is an ecosystemic MAS that
generates symbolic music with interpretation (Kirke
& Miranda, 2011). Each agent has the same archi-
tecture and has a tune in the memory. The agent
with similar tunes performs to each other during each
cycle. When an agent performs to another, the listen-
ing agent learns the interpretation of the other agents
tune. There are four dimensions of the interpretation
in pMIMACS: accuracy/tempo, excitation state, key and
microerrors.

Al-Rifaie and Al-Rifaie (2015) present a MAS 47
generating musical melodies with symbolic represen-
tation. This implementation also uses a swarm intelli-
gence algorithm, Stochastic Diffusion Search (SDS) that is
inspired by one species of ants, Leptothorax acervorum.
In SDS, the agents situated in a search space and commu-
nicate with one another directly. SDS has two phases: test
and diffusion. During the test phase, each agent imple-
ments exploitation. If an agent finds a better solution, the
agent is considered happy. During the diffusion phase,
each agent talks to another agent that is randomly chosen.
If an unhappy agent talks to a happy agent, the unhappy
agent is considered lucky, and the happy agent shares its
location with the lucky agent. In each iteration, the num-
ber of local unhappy, and lucky agents are stored for the
sonification. The focus in this implementation is generat-
ingmusical scores that sonifies the agent communication.
The system uses plain texts as an input, and the letters are
mapped to pitch, note duration and dynamic. The popu-
lation size is 20, and the number of iterations (episodes)
is 10. The authors exemplified this implementation with
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a melody generated by the text ‘hello music sds welcome
to the reality’.

Similarly, Gimenes and Miranda (2011) applied cul-
tural ecosystem approach in the design of Interactive
Musical environments (iME 48 ). iME concentrates on
monophonic melody generation. The system design
applies the ideas of ‘memetics’. Memetics (as in genet-
ics) is the idea that the development of cultural organisms
is through the smallest functional units that are memes
(as in genes). The authors propose the term ontomemetic
(inspired by ontogenetic) that is ‘the sequence of events
involved in the development of individuals musical-
ity’. The authors also point out the characteristics of
ontomemetic systems:

(1) Modelling cognitive and perceptive abilities of
humans,

(2) Using the interaction between artificial entities to
create emergency

(3) Modelling interactivity through the communication
between artificial entities

(4) The availability of comparison of different musical
styles generated by an application of ontomemetics

iME applies ontomemetics to monophonic melody
generation using a feature extraction on MIDI data. The
features are melodic direction, melodic leap, inter-onset
interval, duration, intensity and vertical number of notes.
iME has a virtual ecosystem in which agents listen each
other. Each agent has the same architecture. One agent
takes the role of player whereas the other takes the role
of listener. The agents have two types of memory: long-
term and short-term. The long term memory stores all
unique memes that the agent encounters. Each meme
has a connection pointer that is the index of the succes-
sor meme. Each meme has a weight that increases as the
agent encounters a meme more. In that sense, this struc-
ture resembles a first-order Markov model. Short-term
memory only saves a user-defined number ofmemes that
the agent encountered the latest. The system is capable to
generate music as using solo agents, as well as collective
improvisation. The generative algorithm includes a pre-
set compositional and performancemap that guides agents
to choose memes.

Our survey of cognitive and reactive musical agents
finishes here. We continue by reviewing musical agents
that combine cognitive and reactive modules together in
their system design.

6. Hybrid musical agents

Hybrid agent architectures include both reactive and
cognitive modules together. Following, we discuss four
subcategories of hybrid musical agents.

6.1. Hybridmusical agents using statistical
sequencemodelling

A recurrent theme in hybrid musical agent studies is
the implementation of statistical sequence modelling
algorithms such as Incremental Parsing (IP), Probabilis-
tic Suffix Trees (PSTs), Factor Oracles (FOs), Partially
Observable Markov Decision Processes (POMDP), Vari-
able Markov Models (VMM), Hidden Markov Models
(HMM). Many systems presented in this section use
MarkovDecision Processes orMarkovModels orMarkov
Chains.

Markov Models are finite state machines that encodes
patterns os transitions between discrete states using the
Markovian assumption. TheMarkovian assumption of an
Nth order Markov model is,

P(st|st−1, st−2, . . . , s1) = P(st|st−1, . . . , smax(t−N,1)).
(1)

The order of a Markov model dictates how many pre-
vious states to be considered to predict and generate the
next state. Moreover, the conditional probabilities of the
transitions dependon the observednumber of transitions
between the states.

The environment is discrete and stochastic in Markov
Models (Puterman, 1994). The environment is stochastic
because given a particular state, the resulted next state of
an agent is not certain. Specifically in Markov Decision
Processes, we can define a probability function p(s′|s, a)
where s is the current state of an agent, and a is an
action. Reward function, r(s, a), evaluates an action, a,
performed in a particular state, s. Policy (or decision rule),
d, is an assignment function, d : S → A, where S is the
set of all possible states and A is the set of all actions that
are available to an agent. Hence, a policy specifies which
actions should be performed in which states. In Markov
Models, value iteration algorithm defines how to find
an optimal policy (Puterman, 1994). Moreover, Markov
Models can apply learning. Agents generate the transition
probabilities between states during learning. For exam-
ple, Martin, Jin, van Schaik, and Martens (2010) imple-
ment PartiallyObservableMarkovianDecision Processes
(POMDP) 49 in the design of a hybridmusical agent that
listens to human performers (the system 74 ). The system
generates melodies in the key of the human performer
using tonal harmony theory in music.

The initial experiments on using statistical sequence
modelling algorithms for music focused on how to cre-
ate optimal tree form representations using compression
algorithms for online applications of music. Two early
works (Assayag, Dubnov, & Delerue, 1999; Dubnov,
Assayag, & El-Yaniv, 1998) concentrated on generating
sequences of melodies using Lempel-Ziv compression
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algorithm. Later, their work evolved into two interactive
musical agents, the Continuator andOMax. The Contin-
uator 50 is awell-knownmusical agent on the problemof
musical style imitation (Pachet, 2003, 2004). The Contin-
uator study proposes theMuMe problem of continuation,
that is, continuing a performance in the style of the per-
former when the performer stops. Using symbolic rep-
resentation of music (MIDI), Pachet (2004) introduces
hierarchy and bias to Variable-Order Markov Models
to handle the polyphony, noise and arbitrary rhythmic
structures in the input. The agent architecture consists
of two parts: analysis and generator. The analysis mod-
ule has three submodules: phrase end detector (adaptive
temporal threshold mechanism), pattern analyser (the
generation of Variable-Order Markov Model) and global
property analyser (number of notes per second, tempo,
meter and overall dynamics). The Continuator has two
modes of interaction: question and answer and collabora-
tion. What Pachet (2004) refers as question and answer
are call and response, a well-known improvisation set-
ting in the context of jazz. In the collaboration mode,
the Continuator implements accompaniment by listen-
ing to a human performer in real-time and adapting the
generated output in parallel with the human performer’s
style. Moreover, Pachet (2003) proposes three implemen-
tations of Continuator. First, a musician can play with
a Continuator trained on a famous musician’s perfor-
mance. Second, multiple musicians can have multiple
Continuators trained on different musical performances.
Musicians can also have Continuators trained on the
same corpus. Third, theContinuator can extend a soloist’s
capability or accompany a soloist by training on a corpus
of chord sequences.

Beatback 51 (Hawryshkewich, Pasquier, & Eigenfeldt,
2010) also focuses on the tasks of accompaniment,
and call and response by implementing Variable Order
Markov Models to generate musical rhythms. The sys-
tem represents rhythm sequences in three dimensions:
inter-onset time difference, velocity (MIDI) and drum
type (instrument). BeatBack focuses on two musical
applications: accompaniment, and call and response.
Hawryshkewich et al. (2010) present a technique called
Drum-kit Zoning to use BeatBack as an Expanded Instru-
ment System that expands the performance of a drummer.
The pattern generation inBeatBack has twomodes: query
and build. In the Query mode, Beatback uses the last
rhythmic pattern of its input to search for and assign
probabilities to possible next patterns. In the Buildmode,
Beatback generates a rhythmic pattern using the proba-
bilities generated by the Query mode.

Ringomatic 52 is another musical agent that gener-
ates rhythm accompaniment (Aucouturier Pachet, 2005).
The authors implement two classification tasks to

Figure 14. Energy-based generation in Ringomatic (Aucouturier
& Pachet, 2005).

automatically generate a hybrid corpus. The first task is
to find solo drum sections in recordings and the sec-
ond task is to label them with three energy levels of
low, medium and high (Figure 14). Ringomatic’s archi-
tecture includes constraint-based concatenative synthe-
sis to generate audio. Ringomatic sets the constraints of
energy, onset density and pitch. The authors propose a
new technique called incremental adaptive search that
is an implementation of local search techniques in con-
straint satisfaction problem. The constraints are intro-
duced to the system as cost functions. There are two types
of constraints: local and global. Local constraints look
only at the current state to predict a next state whereas
global constraints include past states in the cost function.
Aucouturier and Pachet (2005) also present an analysis
of the system in a duo with a human performer playing
MIDI keyboard.

Factor Oracle (FO) is a finite state automata that is
a variation the suffix tree. FO represents substrings and
patterns in a sequence, that is, at least all factors of a
sequence. FO has three types of links: internal links,
external links and suffix links. Internal links are for-
ward links between successive states. External links are
forward links that jump longer than successive states.
Suffix links are backward links that point the longest
repeating factor in the previous states. FO allows incre-
mental learning, and learning is linear in time and
space (Lefebvre & Lecroq, 2002). Assayag and Dub-
nov (2004) compare IP, PSTs and FOs for the sym-
bolic sequences of music. Assayag and Dubnov (2004)
conclude that FOs suit the best to satisfy incremental
and fast online learning, time-bounded generation of
musical sequences and implementation ofmulti-attribute
models to deal with the multi-dimensionality of music.
Within the last two decades, many studies implemented
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FOs in musical agents (Assayag, Bloch, Chemillier,
Cont, & Dubnov, 2006; Assayag & Dubnov, 2004;
Donze et al., 2014; Dubnov, Assayag, & Cont, 2007;
Einbond, Borghesi, Schwarz, & Schnell, 2016; Fra-
nois, Chew, & Thurmond, 2011; Franois, Schankler,
& Chew, 2013; Lévy et al., 2012; Lynch, 2014; Nika
& Chemillier, 2012; Nika, Chemillier, & Assayag, 2017;
Nort, Oliveros, & Braasch, 2013; Surges & Dubnov, 2013;
Valle et al., 2017; Wang & Dubnov, 2014).

Assayag et al. (2006) present a framework to imple-
mentmusical agents with FOs, calledOMAX 54 . OMAX
uses a FO based real-time machine improviser scheme
(Assayag&Dubnov, 2004). Assayag et al. (2006) also pro-
pose two unique implementations of FOs: one with rein-
forcement learning, and the other with meta-level learn-
ing. First mentioned by Dubnov and Assayag (2005),
OMAX listens to a performer, and learns the style of the
performer using FO (Figure 15). The problemof style imi-
tation is well-known inMuMefield (Pasquier et al., 2017).
The agent generates by using navigation strategies com-
bined with the links and factors within the FO model,
browsing the model using diverse navigation stratgies,
and renders these sequences sonically. Thus, the gen-
erated material is recombination of musical material in
the agent’s memory. The agent utilises polyphonic pitch
duration slices with MIDI for the musical applications
with symbolic representations, and real-time recorded
audio segments in the case of audio (Lévy et al., 2012).
Lévy et al. (2012) implementOMAX inMAX5, including
pitch estimation, and spectral clustering with Mel Fre-
quency Cepstral Coefficients (MFCCs) and Fast Fourier
Transform (FFT) in the analysismodule. Ongoing artistic
use of OMAX appears in two context, duo with a human
performer playing an acoustic instrument, and control of
anOMAXmusical agent by an electronic musician (Lévy
et al., 2012). The I/O ofOMAX can be symbolic represen-
tation of music, or audio signals, or video signals (Bloch,
Dubnov, & Assayag, 2008; Lévy et al., 2012).

The hybrid musical agent architecture 55 of Cont,
Dubnov, and Assayag (2007) also implement FOs with an
anticipatory model of musical style imitation with col-
laborative and competitive reinforcement learning. The
authors use multiple viewpoints (Conklin, 2013), and
there are four factor oracles trained for musical dimen-
sions of pitch, pitch contour, duration, and duration ratio.
The system can be used in two modes: interaction and
self-listening. In the interaction mode, the agent listens to
another agent (or human performer) whereas the agent
listens to its own audio output in the self-listening mode.

Collins (2008) also presents a musical agent, called
Improvagent 56 that uses reinforcement learning with
symbolic representations ofmusic. Using theMIDI input,
the agent computes a set of onset, pitch, and rhythm

Figure 15. The block diagram of OMAX (Lévy, Bloch,
& Assayag, 2012).

Figure 16. The improvisation renderer in Improtek (Nika,
Bouche, Bresson, Chemillier, & Assayag, 2015).

features as well as higher level features such as key,
pitch class, expressiveness and density. Improvagent treats
input frames as the states of the environment. The sys-
tem clusters environment states using k-nearest neigh-
bours with Euclidian distance. The agent also updates
its database in real-time. The included reinforcement
algorithm is Sarva11 Improvagent generates the audio
using the concatenative synthesis.

Improtek (Nika et al., 2015; Nika & Chemillier, 2012;
Nika et al., 2017; Nika, Echeveste, Chemillier, &
Giavitto, 2014) builds upon OMAX, and implements
OMAX with an introduction of tempo, beats,
harmonisation, and arrangement. Improtek system uses
three Factor Oracles for improvisation, harmonisation
and arrangement, using the symbolic representation
of music (MIDI) for the applications of improvisation
and accompaniment. Nika et al. (2017) further develop
Improtek by introducing a scenario/memory generation
model. Figure 16 shows the guided improvisation in
Improtek with a scenario and memory. The authors use
any alphabet in themusical context, such as audio, MIDI,
or sound synthesis parameters. A symbolic sequence of
labels defined with the alphabet is the scenario whereas
a sequence of musical contents labelled using the alpha-
bet is the memory. The improvisation is guided by the

11 The details of Sarva is available in the book on reinforcement learning by
Sutton and Barto (1998).
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scenario using two strategies: anticipation and digression.
Using anticipation, Improtek searches the memory for
a starting sequence. The constraint is that the starting
sequence matches the future labels that follow the cur-
rent state of the scenario. Digression strategy ensures that
Improtek finds a continuation sequence in the memory.
This continuation sequencematches both past and future
states of the current state of the scenario. The imple-
mentation consists of three agents: improvisation handler,
dynamic score, and improvisation renderer. The impro-
visation handler is a reactive agent that implements the
guided music generation using a scenario and a memory.
The dynamic score handles perception of Improtek’s envi-
ronment. The improvisation renderer conducts the out-
put generation using the content generated by the impro-
visation handler. Nika et al. (2017) points out two cases
of performance with Improtek: human andmachine, and
machine only. When Improtek is trained on audio, the
agent conducts online audio generation using a phase-
vocoder. Hence, Improtek can sample live audio and
apply time stretching, pitch-shifting and crossfade trans-
formations in real-time to temporally and harmonically
align the generated improvisation with a pre-defined sce-
nario.

In parallel with the studies on OMAX framework,
Dubnov et al. (2007); Dubnov, Assayag, and Cont (2011)
present Audio Oracle 58 . Inspired by FOs, Audio Oracle
is an algorithm that detects repeating sub-clips of variable
length in audio data. Dubnov et al. (2011) define these
sub-clips as audio factors. Similar to FO, Audio Oracle
analyses an audio file as a string of audio feature vectors.
The user can choose different audio features (or combina-
tions of audio features) to train anAudioOracle. Forward
links inAudioOracle refers to the states that generate sim-
ilar patterns by continuing forward whereas backward
links correspond to the states sharing the largest simi-
lar sub-clip in an audio file. Audio Oracle uses Euclidian
distance between audio features to decide if two states
belong to the same class. The user sets a similarity thresh-
old, and if the Euclidian distance between two states is
below the threshold, those states are accepted as equiva-
lent. High similarity threshold means that distant states
are more likely to be labelled with the same class, thus
decreasing the size of the alphabet. Furthermore, Dub-
nov et al. (2011) introduce automatic threshold selec-
tion for the Audio Oracle using the notion of Informa-
tion Rate (IR) in Signal Processing (Dubnov, McAdams,
& Reynolds, 2006). AO uses the threshold that gives the
highest information rate.

Surges and Dubnov (2013) further developed Audio
Oracle studies by introducing a system for music anal-
ysis and machine improvisation, called PyOracle 59
(Figure 17). Similar to Audio Oracle, PyOracle includes

an off-line learning that inherits signal complexity and
familiarity analysis. Surges and Dubnov (2013) relate
complexity and familiarity to aesthetic appreciation
with Birkhoffs idea of aesthetic measure (Rigau, Feixas,
& Sbert, 2008). Birkhoff defines aesthetic measure as the
ratio between the order and the complexity. AudioOracle
uses IR to balance between the order and the complexity.
IR measures the reduction of a signal’s uncertainty using
signal’s past values. Surges and Dubnov (2013) stated
that low IR refers to higher complexity and lower order
whereas high IR corresponds to lower complexity and
higher order. Audio Oracle uses IR measure to set the
uniqueness distance threshold between the states. Surges
and Dubnov (2013) aim for the highest IR in the imple-
mentations to extract the musical form information of a
signal during the PO’s learning process.

Building on the previous studies of FOs,Audio Oracle,
and PO; Wang and Dubnov (2014); and Arias, Desainte-
Catherine, and Dubnov (2016) introduce another musi-
cal agent system using Variable Markov Oracles
(VMO 60 ).VMOallows adaptive symbolisation of audio
features to provide representation of higher musical
structures. The system implements Petri Net graphical
language for concurrent and distributed system design,
PyOracle to create Audio Oracles, and I-score (Baltazar,
de la Hogue, &Desainte-Catherine, 2014) to control gen-
erated models with graphic scores. The authors mention
that the previous studies on musical implementation of
Factor Oracles have been criticised by not representing
higher musical structures, and this study addresses the
representation of higher musical structures using Petri
Net. Arias et al. (2016) propose that a possible next step
for the development of this system is the introduction
of scenario/memory generationmodel, presented by Nika
et al. (2015).

Freely Improvising, Learning and Transforming Evolu-
tionary Recombination (FILTER) (Nort et al., 2013) is a
musical agent that combines FO and a type of Markov
Models, called HiddenMarkovModels (HMMs). HMMs
are widely used to model temporal discrete sequences.
HMMs consist of hidden states and observed states. The
number of hidden states can be different than the number
of observed states. The transition matrix is the likeli-
hood of transitions between hidden states. The obser-
vation (or emission, or confusion) matrix is the likeli-
hood of observations given a hidden state. HMMs have
three applications: evaluation (likelihood of an observed
sequence given an HMM), decoding (the sequence of
hidden states that most likely to generate the observed
sequence) and learning (generating an HMM given a
sequence of observed states).

The musical application of FILTER is free impro-
visation. FILTER implements style imitation based on
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unsupervised learning. The learning applies Smalley’s
approach on textures and gestures in Electro-acoustic
Music (Smalley, 1997). Using an inter-onset threshold,
FILTER samples the audio input of the lastN seconds and
the memory encodes the temporal changes of audio fea-
tures. If the recorded sample is dissimilar to the anything
in the current memory, it is added to system’s memory.
FILTER includes sonic gesture and texture analysis. FIL-
TER applies continuous gesture recognitionmethod pro-
posed by Bevilacqua et al. (2009) to learn sonic ges-
tures of the input using Linear Predictive Coding (LPC),
Mel-Frequency Cepstral Coefficients (MFCCs), autocor-
relation coefficients and YIN algorithm features (fre-
quency, energy and periodicity). The gesture recognition
algorithm combines HMM with dynamic time warp-
ing. The system can learn a dictionary of gestures either
offline using a corpus or online by listening to the
input. The gesture recognition algorithm outputs the
likelihood of gestures. Using the likelihood, FILTER can
perceives the level of deviation from the current ges-
ture of the input. The system also inherits a non-linear
time-frequency analysis called intrinsic mode function
to comprehend the sonic texture of the input. FILTER
includes two types of memory: semantic and episodic.
The semantic memory is the dictionary of distinct ges-
tures whereas the episodic memory applies FO to learn
temporal structures of the input. FILTER also applies a
mutation only Genetic Algorithm (GA) for the adaptive
goal decision process. The system introduces adaptivity
by mapping the gesture/texture likelihood values to the
fitness of GA.

Lastly, SpeakeSystem 62 is a musical agent with Vari-
able Markov models (VMMs) (Yee-King d’Inverno,
2016). The agent uses FM synthesiser to generate audio.
The modulation index of the synthesiser changes as the
length of sequences generated by VMMs varies. The
authors stated that using two VMMs, where one VMM
handles the rhythm and the other focuses on the pitch,
generatesmore varied output, comparing to the case with
one VMM.

6.2. Hybridmusical agents combining statistical
sequencemodelling with rule-basedmodels

Martin, Jin, and Bown (2011) present a framework
for non-technical users to design musical agents. This
framework, called The Agent Design Toolkit (ADTK 63 )
implements the ideas of interactive machine learning
in musical agents. ADTK consists of three elements: a
set of recorded performance variables, a set of prob-
abilistic temporal models and a set of rules defining
the relation between performance variables. The frame-
work uses VMMs for probabilistic temporal models and

association rule learning (ARL) algorithms for automatic
rule generation using the recorded performances. Fol-
lowing this study, Martin, Jin, Carey, and Bown (2012)
introduce ADTK to Ableton Live, a well known Digi-
tal Audio Workstation (DAW). Martin, Jin, Carey, et al.
(2012) conducted two case studies on ADTK, designing a
musical agent that improvises electro-acousticmusic, and
amusical agent generatingDrumandBassmusic.Martin,
Jin, and Bown (2012) mention a possible computational
complexity problem with the initial versions of ADTK.
The automatic rule generation solves the constrained sat-
isfaction problem using ARL algorithms. However, it is
not possible to know how long ARL algorithms take, and
how many solutions the algorithm produces. This makes
the systems designed with ADTK framework suscepti-
ble to bugs in real-time performances. To address this
computational complexity problem, Martin, et al. (2012)
propose binary decision diagrams (BDDs). Although
the introduction of BDDs does not completely solve
the computational complexity problem, the designer can
examine if an agent is capable of real-time performance
before the performance. Thereby, the system is no longer
susceptible to bugs in real-time performances. Martin,
Jin and Bown (2012) also compare BDDs-based ADTK
to the initial version of ADTK with ARL, conclud-
ing that the parameter update duration was more pre-
dictable in BDDs-based implementation than the ARL-
based implementation. Martin and Bown (2013) also
demonstrate ADTK on style imitation. Bown and Mar-
tin (2013) mentioned that the musicians could control
the agents designed using ADTK. Hence, these agents
stand somewhere between an extended instrument and
an autonomous performer.

CinBalada 64 is another multi-agent system that
combines statistical sequence modelling with rule-based
models (Sampaio, Ramalho, & Tedesco, 2008). The sys-
tem generates polyphonic rhythmic sequences as the
symbolic representation of music. Sampaio et al. (2008)
are inspired by the music styles with an emphasis on the
rhythm such as taiko, pungmul, samba batucadas and
maracatu. CinBalada includes three rhythm representa-
tions of Time Unit Box System, Polygonal Representa-
tion, Time Elements Displayed as Squares to calculate
rhythmic measures of offbeat-ness, evenness and rhyth-
mic similarity as chrotonic distance. CinBalada includes
these rhythmic measures in the evaluation functions.
Cinbalada is a homogeneous MAS with multiple roles.
There are multiple rhythmic roles that each agent can
choose. The number and the type of rhythmic roles
depend on the implemented musical style. For example,
a Batacuda implementation has three roles of base, com-
plementary base and solo. The evaluation functions also
change depending on the implemented style. Within a
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bar, agents in CinBalada negotiate what to play in the
following bar. The agents share their rhythmic patterns
with the other agents. CinBalada outputs only the pat-
terns that score the highest on the evaluation functions.

6.3. Hybridmusical agents with artificial neural
networks

Artificial Neural Networks (ANN) is a set of Machine
Learning algorithms. ANNalgorithms are inspired by the
theories of neuron activation and sensory data processing
of neural systems in nature. ANN has been applied to the
Machine Learning problems of classification and linear
regression (Mitchell, 1997).

The Reactive Accompanist 65 is the first musical
agent system that implements Subsumption architecture,
including three ANNs in different layers (Bryson, 1995).
Subsumption architecture (mentioned in Section 5)
implements a hierarchical set of rules in which lower
layers have higher priority, or vice versa. ReactiveAccom-
panist is a mono-agent system with audio input and
symbolic output (MIDI). There are three layers in the
architecture: pitch, chord and time; ordered from the low-
est to the highest layer respectively (Figure 18). The pitch
layer has two modules. The first one implements Fourier
transform and outputs frequency-gain pairs. The sec-
ond module is an ANN with supervised learning. The
input is frequency-gain pairs whereas the output is pitch
classes. The chord layer is also anANN. The input is pitch
classes and the output is predefined chords. The highest
layer in the hierarchy, time has four modules of thresh,
beat, timed, and change. The first three modules handle
rhythm. Beat module implements tempo estimation with
ANN and change module handles chord changes. The
application of this system is accompaniment of live input.
Bryson implemented the system in the first half of the 90s
when Fourier transform calculation was still too compu-
tationally complex for online applications. Because of the
Fourier transformcalculation in the pitch estimation, this
system works offline.

Another musical agent with ANNs is NN music 66
(Young, 2007). The architecture is an implementation of
themusical agent framework, PQf proposed by Blackwell
et al. (2012), where P implements listening and analysis,
Q handles performing/synthesis and f conducts pat-
terning, reasoning, or generative functions. NN music
includes two analysis functions in P module: parameteri-
sation of pitch characteristics and statistical representation
ofmusical behaviour. These two analysis output two inde-
pendent state representations: a set of recently identified
pitches and a set of statistical representation of audio fea-
tures computed over 50 ms audio frames. The statistics
are calculatedwith a varyingwindowof 5–30 s.NNmusic

Figure 17. The interface of PyOracle.

Figure 18. The Subsumption architecture of the ReactiveAccom-
panist (Bryson, 1995).

includes two Multi-layer Perceptron (MLP) neural net-
works that are connected in series. Both networks are
trained with the back propagation algorithm and have
three hidden layers. The statistics of audio features is
the input of the first ANN. The second MLP maps the
classification output of the first MLP to synthesis param-
eters. The second MLP outputs a set of synthesis param-
eters with a probability distribution. Hence, the synthesis
module inherits stochastic behaviours. The training of
the first MLP is ongoing during the performance. There
is a similarity algorithm in the system that checks if the
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current state is similar to the states that are used in the
training. If the current state is not similar, ANNs are
trained with the current state. The secondMLP is trained
before the performance.

Bown (2011) presents a musical agent 67 with
continuous-time recurrent neural networks (CTRNNs).
Each node is connected to each other with a direc-
tional weighted connection (synapses) in CTRNNs. In
this implementation, the nodes have sigmoid activation
function to process the directional weighted outputs of
previous neurons. CTRNN is a blackbox type module
with N (and M) floating point input (and output) val-
ues. In addition to the learning in CTRNN, Bown (2011)
implements a mutation-only Genetic Algorithm (GA)
that evolves multiple CTRNNs in parallel. Bown (2011)
mentions that the GA includes a multi-objective fitness
function that evaluates CTRNNs’ ‘success at acting with
the responsive properties of dynamic reservoirs’ and suc-
cess at showing repetitive behaviours when the input is
repetitive. This musical agent maps the CTRNN output
to continuous synthesis parameters as well as the decision
of triggering sound events. This agent has been presented
in many concerts, performing with human-performers
playing trombone, clarinet and shakuhachi. Building
on this agent, Bown (2011) presents another musical
agent that includes Decision Trees (DTs). Bown (2011)
states five advantages of DTs over CTRNNs: discrete out-
put on each time step, the ease in the analysis of the
agent’s behaviour, efficiency and adaptive self-calibration
of decision boundaries. This implementation with DTs
also includes a mutation-only GA evolving multiple DTs
in parallel. The fitness function is single-objective, and
it is for maximising the number of DT leaf nodes vis-
ited. This agent has also been presented in many venues,
with human-performers playing trumpet, bass clarinet
and electronics.

Kohonen Network is an application of ANN (Koho-
nen, 1998). Although Kohonen networks, including Self-
Organising Maps (SOMs), are proposed in the early
1980s (Kohonen, 1982), it is recently discovered by stud-
ies related to the MuMe field. Smith Garnett (2012)
present a musical agent 68 with adaptive resonance
theory (ART) and reinforcement learning (the system
number 69 in Table 1). This implementation focuses on
monophonic melody generation. The ART network is a
self-organising neural network for classification and cat-
egorisation of data vectors. ART network differs from
SOM in training. Each input vector updates only one
node in the ART network whereas in SOM, a set of nodes
are updated. The agent converts the MIDI input to a
combined feature vector of pitch class, interval, interval
and direction window, direction sign, octave and inter-
val octaves. The reinforcement learning implements two

functions. First, when the agent updates an existing node
in ART network, the agent calculates the reward using
the previous and the updated state of the node. Second,
when the agent creates a new node in ART network, the
agent calculates the reward using a user set parameter
called vigilance. The authors also present two examples
of the agent on free improvisation. Another example
presents the output of an agent trained using J. S. Bach’s
six unaccompanied cello suites.

Smith and Deal (2014) present a musical agent appli-
cation 69 of SOMs. This agent architecture utilises
chroma audio feature extraction in the perception stage
to extract the pitch and rhythm information from the
agent’s audio input. Then, the agent’s memory organises
extracted chroma vectors in two levels, long-term and
short-term. The authors introduce adaptive behaviour to
the agent’s short-term memory by using a SOM. In this
system, training of the SOM is continuous. The decision
module of this agent calculates a measure of learning in
the SOM using the difference between the previous state
and the trained state. Smith andDeal (2014) state that this
learning measure is analogous to the Kolmogorov com-
plexity. The decision module targets a learning rate. This
agent follows its input if it is complex enough to satisfy
the target learning rate. If not, the agent diverges from
the input to increase the overall complexity. Hence, the
decision module provides SOM a distance to the audio
input vector. Then, the agent decides on a corresponding
SOMnode. This node is the input vector of the long-term
memory. The long-termmemory uses a k–d tree to search
in a multi-dimensional space. Each vector provided from
SOM is a search query to locate the closest vector in the
long-term memory. The long-term memory consists of
pre-defined audio files, and the agent does not update the
long-term memory.

Martins and Miranda (2006) present a musical
agent 70 with SARDNET generating rhythms. SARD-
NET is a variation of SOMs with an addition of tempo-
rality. SARDNET deals with event sequences using node
activation values and differs from SOMs in two ways.
First, the winning neurons are not included in the subse-
quent training. Second, the activation values of each node
are decreased in each step. SARDNET represents the
input sequence as all active nodes ordered by their acti-
vation values. Martins and Miranda (2006) approach the
rhythmic events as three-dimensional events. These three
dimensions are timbre, velocity and inter-onset inter-
val. The musical agent includes two ANN cascaded in
series. Symbolic representation rhythmic phrases (MIDI
sequences) are the temporal input of the SARDNET. The
output of SARDNET is connected to a one-layer Per-
ceptron with three outputs. The training of this musi-
cal agent is through pre-recorded rhythms. The authors
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mention that after fifty iterations, the agent starts to
self-organise. Notice that we also encountered the idea
of evolving rhythms in Eigenfeldt’s (Eigenfeldt, 2011)
Kinectic Engine (see Section 5.1.2).

6.4. Hybridmusical agents with cognitivemodels

Camurri et al. (1995) present a musical MAS frame-
work called Hybrid Action Representation and Planning
(HARP) 71 . Using the idea of graphical visual program-
ming, HARP provides flexible programming environ-
ment to the user. The system is capable to create a hybrid
agent system. The framework is inspired by MAS imple-
mentations in Robotics. The application of this frame-
work is assisted composition, performance and analysis.
The authors define twomain components ofHARP: sym-
bolic and sub-symbolic. Symbolic components implement
compositional syntax and semantics, including domain
specific knowledge representations. Sub-symbolic com-
ponents are the reactive modules of the system with
a network of cooperative agents. Sub-symbolic compo-
nents process the signals of MIDI, audio, or visuals. The
authors also give an example of a theatre performance in
whichHARP framework is used to programme a software
controlling sound, music and three-dimensional com-
puter animation of humanoid figures interacting with
real actors on stage.

The hybrid musical agent architecture 55 of Cont
et al. (2007), mentioned in Section 6.1, explores musi-
cal agent applications using the mental representations
of expectation in the problem of style imitation. There
are four types of mental representations of expecta-
tion, proposed in the literature of psychology of musical
expectation: verdical expectation (expectation of familiar
works, related to episodic memory), schematic expecta-
tion (related to the semantic memory), dynamic adaptive
expectation (related to the short-term memory), con-
scious expectation (related to the conscious reflection
and prediction) (Huron, 2014). Cont et al. (2007) apply
these ideas to MuMe by using an anticipatory model of
musical style imitation with collaborative and competi-
tive reinforcement learning. Within four types of antic-
ipation (Implicit, Payoff, Sensory and State), the authors
implement payoff and state anticipation models.

Similarly, Gifford Brown (2010) focus on the idea
of using anticipatory timing to plan future actions of
a musical agent. The system, called Jambot 72 is a
hybrid musical agent that generates percussive musical
rhythms. Jambot can generate rhythms by listening to
other performers, or alone. The authors define antici-
patory timing as a search for the best next note and
when to play this note. The study stated that anticipatory
timing enhanced greedy search while slightly increasing

the computational complexity. Jambot includes a fitness
function that evaluates possible actions and possible act-
ing times for the next action. Jambot repeats the fitness
evaluation on each time frame (audio frame). Gifford and
Brown (2010) also present examples of system’s output
with and without anticipatory timing.

In the later versions of Jambot, Gifford (2013) intro-
duces musical expectation in their hybrid musical agent.
Jambot’s application is percussive accompaniment to a
live audio input. The authors are inspired by the previ-
ous works on musical expectation and propose metre as
a framework for musical expectation. The system design
involves metrical ambiguity to balance novelty and
coherence. Jambot’s architecture has three modes that
controls level of metric ambiguity: disambiguation (use
only themost plausiblemeter), ambiguation (use all plau-
sible meters with equal weights) and following (use all
plausible meters with the weights adjusted by plausibil-
ity). The reactive behaviours in this system include three
approaches to fluctuate between imitative and intelligent
actions: ‘(i) mode switching based on the confidence of
understanding, (ii) filtering and elaborations of imitative
actions, (iii) measured deviation from imitative action
according to a salient parametrisation of the action space’.

Another recurrent theme in cognitive musical agents
is motivation-driven, goal-oriented musical agent archi-
tectures (Beyls, 2008, 2009; Lynch, 2014). Beyls (2008,
2009) focuses on the motivation-driven musical agents
73 . The architecture includes two-dimensional space
(stability versus introverted-extroverted) to model beha-
vioural changes. The system abstracts motivations as
two types of drives: integration and expression. Integra-
tion drives aim to follow the input data whereas expres-
sion drives seek to move away from the input data. The
compound function sets the drive of the agent depend-
ing on the levels of integration and expression. This
hybrid musical agent implementation also includes reac-
tive modules with an implementation of reinforcement
learning and a Genetic Algorithmmodule (see 5.1.2) that
evolves drives. Beyls (2009) also analysed the agent and
shows that the fitness function of GA successfully follows
the drives set by the compound function.

Lynch (2014) work is the only study that uses a cogni-
tive architecture (CLARION) presented in the Cognitive
Science. The system, called Mocking-bird 74 combines
Van Nort’s FILTER system with the Clarion cognitive
architecture (Figure 19). The Clarion cognitive architec-
ture consists of four sub-systems, that are theAction Con-
trol System (ACS), Non-Action Control System (NACS),
Meta-cognition System (MCS) and Motivation System
(MS). Users can implement either the complete Clar-
ion architecture or any number of its sub-systems. The
Clarion architecture decides the actions ofMocking-bird.
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These actions indicate a pre-recorded sample to be played
starting from a point with a duration, and post processing
effects such as pitch shift and time stretch.

The last four systems that we survey includes Affec-
tive Computing. First,MAgentA 75 is a cognitive musi-
cal agent that focuses on generating ‘film like music’
for games using an algorithm database with affective
labels (Casella & Paiva, 2001). MAgentA is a part of the
game framework FantasyA in which the user can influ-
ence the affective state of the characters they play (Paiva
et al., 2002). MAgentA’s architecture has three mod-
ules: perception, reasoning, and action. This architecture
resembles (Blackwell et al., 2012) PQf musical agent
framework. Perception module checks the affective state
of the environment and generates outputs when the affec-
tive state changes. Reasoning module checks if the new
affective state can be generated with one of the algo-
rithms in the database. If not, the exception handling
module uses the history database to decide the most
appropriate algorithm to use. Once the agent decides
which algorithm to use, it sends the algorithm to the
composition engine. The action module generates the
audio output using data coming from the composition
engine.

Second, Dubnov andAssayag (2005) combine the flow
model with Factor Oracle and create a musical agent 76
within the OMAX framework. The agent listens to other
performers online to train the FO. The flow model
defines the notion of Experience Flow that explores the
relationship ofmental stateswith the activitywhere a sub-
ject is fully engaged and immersed with the tasks (Csik-
szentmihalyi, 2008). Dubnov and Assayag (2005) change
the original flow model dimensions, challenge and skill,

with two dimensions of emotional and familiar, and eight
categories of arousal, flow, control, boredom, relax, apa-
thy, worry and anxiety. The authors mapped these two
dimensions of flow model variation to the replication,
innovation and recombination parameters of their musi-
cal agents. These parameters controls the probabilities of
links within the FO.

Third, Kirke and Miranda (2015) implemented Affec-
tive Computing with a virtual ecosystem. We men-
tion other ecosystemic approaches in musical agents in
Section 5.2.2. The application of the system is melody
generation for assisted composition. The system is
called Multi-agent Affective Social Composition System
(MASC 77 ) and combines Affective Computing with
a MAS. The application in focus is assisted composi-
tion. MASC generates melodies through communica-
tion and artificial emotional influence between agents.
This system implements affect estimation of musi-
cal melodies with continuous two-dimensional affective
space. The dimensions are valence and arousal. This 2D
model is common in Affective Computing in sound and
music (Eerola & Vuoskoski, 2013). The agents situated in
a virtual environment. The number of agents is in the
range of 2–16. Each agent has a monophonic melody.
The agents share their melodies with each other. Agents
learn other agents melodies if the emotional state of the
melody is close to the agent’s emotional state. Moreover,
the emotional states of agents are also affected by emo-
tional states of other agents during communication. The
authors present examples of melodies generated by this
system. Also, the first author shared his compositions
in which the first author used this system to generate
melodies to assist the composition process.

Figure 19. The architecture of Mocking-bird (Lynch, 2014).
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Figure 20. The system architecture ofMASOM (Tatar & Pasquier, 2017).

The last system that applies Affective Comput-
ing is Musical Agent based on Self-Organising Maps
(MASOM) (Tatar & Pasquier, 2017; Tatar, Pasquier,
& Siu, 2018).MASOM is a machine improvisation archi-
tecture for live performance (Figure 20). The musi-
cal context of MASOM is experimental music and free
improvisation. MASOM is a flexible agent that can be
trained on any audio file such as a recording of a per-
formance or composition. MASOM extracts the musi-
cal form of an audio file using unsupersived learning.
The learning stage has four steps. First, MASOM seg-
ments the audio file using the multi-granular segmen-
tation (Lartillot, Cereghetti, Eliard, & Grandjean, 2013).
Multi-granular segmentation uses novelty curve to seg-
ment an audio file. Second, each audio segment is labelled
with duration, eventfulness, pleasantness and timbre fea-
tures. Third, MASOM uses SOM to cluster these audio
segments. The last step of the learning stage is the
VMM training. Each segment of the original audio file is
labelled with the closest SOM vector in the feature space.
Using the order of segments in the original audio file,
MASOM generates a string of SOM nodes. This string
represents the musical form of the original audio. VMM
is trained using this string of SOM nodes. The genera-
tion stage inMASOM includes online machine listening.
The agent can listen to itself and other performers by
extracting eventfulness, pleasantness and timbre features.
MASOMusesmachine listeningmodule with the trained
VMM to decide what to play next.

7. Evaluation of musical agents

Frayling (1994) proposes three types of research in Art
and Design. First, the research into art and design is the
historical, aesthetic, and perceptual research such as the
Music History research. Second, the research through
art and design includes the research of materials, cus-
tomisation of technology, or procedures and results of
practical experiments. Third, the research for art and
design communicates the results of research through the

end product, that is the work of art. The ideas and results
are embodied in the artefact; hence, the verbal commu-
nication of the results is not the primary goal of this third
type of research in art and design.

The developers ofMuMe systems evaluate their imple-
mentations informally as a part of the software develop-
ment. Hence, there are two classes of evaluation ofMuMe
systems: informal evaluations and formal evaluations.We
differentiate the evaluation types of MuMe systems and
musical agents with the following typology:

– Informal Evaluations does not involve formalised
research methodologies.
– The authors are the creators of MuMe systems.
– Users, peers and experts are the close entou-

rage of authors.
– The audience is the recipients of the artworks

generated by the MuMe systems.
– The media covers critical writings of experts in

art and music.
– Formal Evaluations are formalised methodologies

to assess the success of MuMe systems.
– Peer reviewers, curators and jury give direct

and indirect feedback to the authors of MuMe
systems.

– Theoretical and analytic measures are the for-
mal evaluation methodologies that does not
involve human participants. These method-
ologies are synthetic measurements that are
acknowledged in the academia.

– Empirical studies apply quantitative, qualita-
tive andmixedmethodologies with human par-
ticipants.

7.1. Informal evaluations

Informal evaluations do not involve any established
research methodology. Informal evaluations of musi-
cal agents start at the beginning of system’s ideation.
The authors iterate the architecture and the system
parameters as a part of the development process. This
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process includes many iterations in which the authors
evaluate the system’s output, change the parameters or the
agent architecture, and evaluate the system’s output again.
For example, most machine learning algorithms require
a set of parameters to be decided by the developer. These
parameters are mostly set by many trials and errors with
the system.

Colleagues and friends of authors are the subjects of
another type of informal evaluations. The authors have a
different perspective on the system with the feedback of
people who are close to the authors. When the system’s
output is publicly shared, the authors receive feedback
from the audience. Although this type of feedback is still
informal, it is beneficial to evaluate the initial results of
the system. When the system outputs reach the media
such as journalists, critics, software testers, bloggers; the
authors receive a feedback about social implications of
systems.

7.2. Formal evaluations

Formal evaluations use established research methodolo-
gies to answer a clearly defined research question to assess
a system (Arges, Forth, & Wiggins, 2016) two types of
formal evaluations: internal and external.

Internal formal evaluations are conducted during the
generation stage of a musical agent. Musical agents assess
their creative output during the generation to improve
the output. In most cases, musical agent developers
implement the internal evaluation as system feedback
loops or using agents with evaluation roles. For exam-
ple, Cypher 10 uses its listener agents to evaluate player
agents. The internal evaluation is a part of system design,
and we already covered the system design of musical
agents in the previous sections.

External formal evaluations are conducted after the
agent finishes its performance or generation. There are
four aspects of external formal evaluations:

– Dimensions of evaluation: Three types of evalua-
tion dimensions are common in the CC literature:
software validation, the quality of a system’s output
and creativity (Ritchie, 2014). In MAS, the authors
can study the creativity of one agent or the creativ-
ity of the system output. Most synthetic evaluations
research the effect of hyper-parameters on the sys-
tem output. A hyper-parameter is a common term in
Machine Learning and it refers to the parameters of
system design, such as number of agents in MAS, or
genetic operator probabilities in EC. In most cases,
hyper-parameters are set before the system run.

– Participants of evaluation: The authors develop
MuMe systems to be used by a user to generate

music that is presented to an audience. Therefore,
researchers focus on three types of participants in
the evaluation: the authors, the users and the audi-
ence. Researchers can evaluate the research and
development process of authors, the interaction of
users with the finalised system, and the audience
response to the output generated by the system.

– Output selection: Ritchie (2014) proposes five
types of output selection that appears in CC: re-
creating known exemplars of the domain, exploring
the neighbourhoodof these exemplars, exploring the
parameter space of a system, random sampling of the
parameter space, structured sampling of the parame-
ter space. These selection options are also applicable
to MuMe systems.

– Methodology: Software validations, synthetic eval-
uations and empirical evaluations are the tools of
formal evaluations.

7.2.1. Software validations
The musical agents that we mention in this survey are
written as software codes. Software evaluations use soft-
ware validation techniques in Computer Science to assess
if the code implementation is sound, complete, or stable.
Briefly, the following three techniques come forward in
Computer Science:

– FormalValidations:Mathematical proofs of the sys-
tem behaviour are examples of this type of valida-
tions.

– Black Box Tests: Given pre-set inputs, black box
tests study the system output to evaluate a system’s
behaviour.

– White Box Tests: Given a set of selected inputs,
white box tests exhaust a system for all possible
conditions to ensure stability and robustness.

7.2.2. Synthetic evaluations
Synthetic methods do not involve human participants.
Theoretical, analytical and computational tools are the
methods of synthetic evaluations. Because of the partic-
ularities of musical agent implementations, the authors
create new synthetic methodologies that are specific
to their implementation. In the following, we survey
synthetic evaluations of Beatbender 20 , system 32 ,
VMMAS 1 , IMAP 36 and pMIMACS 46 .

Levisohn and Pasquier (2008) evaluated Beatben-
der’s 20 system output using two criteria: emer-
gence and complexity. The authors assessed the emer-
gent behaviours of the system by analysing interac-
tion between agents, and the complexity by compar-
ing subsequent patterns generated by the system. The
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authors reported that BeatBender 22 successfully gen-
erated emergent rhythms by taking advantage of the
Subsumption architecture.

Aucouturier (2011) also evaluated the emergence and
convergence in the multi-agent society 32 that evolves
tuning systems. The author evaluated the system with
different agent interaction types: single note shift inter-
action with harmonic timbre, drone shift interaction
with harmonic timbre, drone shift interaction with com-
pressed timbre, and drone shift interaction with a soci-
ety of agents with harmonic and compressed timbre.
Hence, the author researched the effect of agent interac-
tion types on the system output. Aucouturier (2011) con-
cluded that the system could emerge coherent tuning sys-
tems through local agent interactions in the multi-agent
society.

The following three evaluations studied the effect of
hyper-parameters on systems’ output. Vicari et al. (2005)
evaluated VMMAS 1 with two evaluations. Both evalu-
ations calculated a variable called synchronism property,
which is calculated using the rhythm generated by the
agents. However, the authors concealed the details of
how to calculate this parameter. The authors claimed that
synchronism property above 60 indicates a ‘good per-
formance’. The first evaluation included only software
agents, and concluded that introducing new agents to
VMMAS 1 influenced the overall synchronism. Hence,
the authors studied the effect of a hyper-parameter, that is
the number of agents. Wemention the second evaluation
of VMMAS in Section 7.2.3.1.

Miranda et al. (2010) conducted three evaluations to
evaluate IMAP’s 36 performance. The first evaluation
studied if agents could perform according to their indi-
vidual preferences. The weights of the rules in an agent’s
fitness function indicate the individual preferences of an
agent. This evaluation concluded that average agent per-
formances were correlated with the preferences of agents.
The second evaluation showed that the user can con-
trol the overall diversity of performances by changing
the spread of the rules weights. The third evaluation
researched if the populationwas affectedwhen a subset of
agents in the population are biased in their fitness func-
tion. This third evaluation showed that IMAP 36 could
direct the performance diversity to a region in the search
space by introducing a bias to a subset of the population.

Kirke Miranda (2011) analysed pMIMACS 46 out-
put with a synthetic evaluation with three agents. This
evaluation was the detailed analysis of two runs of MAS.
The first run was 8 episode long whereas the second
one was 10. During each episode, agents with performer
roles performed for the agents with listener roles. For
this evaluation, the agents were initiated with a unique
melody including four notes. All notes were sixteenth

notes generated by random walk. The authors claimed
that pMIMACS’s outputs were less mechanical than the
outputs that were ‘usually produced by the algorith-
mic compositions systems’. However, the study did not
include any empirical evaluation to support this claim.

None of the synthetic evaluations study the creativ-
ity of musical agents. However, musical agents tackle
musical creative tasks, and the assessment of creativity is
crucial to evaluate the success of a system.

7.2.3. Empirical evaluations
Given that the definition of creativity is still in discussion
(Peter, 2009), empirical evaluationmethodologies handle
the complexity of creativity assessment by using human
participants to judge the output of a system. Before going
into the details of these evaluations, let’s cover the back-
ground of creativity.

Boden (2015) defines creativity as ‘the ability to gen-
erate new forms’. This definition explains creativity by
focusing on the artefact. Boden (2015) continues by
proposing psychological and biological creativity to cate-
gorise human and non-human creativity. Biological cre-
ativity is ‘the ability to generate new cells, organs, organ-
isms, or species’.We explored computational abstractions
of biological creativity inmusical agents in Section 5.2. In
comparison, psychological creativity is ‘the ability to gen-
erate ideas and/or artefacts that are new, surprising, and
valuable’.

Boden (2015) focuses on two key points to understand
which forms are new. First, Boden (2015) discusses the
notion of novelty in creativity. Second, historical creativ-
ity is a special case of psychological creativity in which
generated form is novel to the community. Furthermore,
Boden (2015) states three types of creativity as a result
ofmechanisms generating novelty; exploratory, combina-
tional and transformational. First, exploratory creativity is
making novel forms that satisfy constraints of a particular
style. An example of exploratory creativity is improvis-
ing a Jazz melody in the style of Charlie Parker. Second,
combinational creativity is combining styles in novel ways
such as improvising a Jazz melody in the style of Chet
Baker with the ornamentations of Charlie Parker. Third,
transformational creativity is the expansion of known
conceptual space. An example of transformational cre-
ativity is John Cage’s idea of including random sounds of
audience to a musical performance.

How to assess the creativity of a system has been a
challenge for the CC research. Jordanous (2012) pointed
out the lack of evaluation in the publications of CC sys-
tems. Also, within the publications that evaluated their
systems, the evaluation of creativity was not common.
When the creativity evaluation took place, the partic-
ipants were mostly the people who implemented the
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system. Jordanous (2012) emphasised the lack of evalu-
ation criteria in the publications that evaluated creativity.
According to 2012, there was a clear lack of connection
between the evaluation of CC systems and the evalua-
tionmethodologies that were presented inCC. Currently,
there is still no evaluation methodology that is accepted
as a standard in CC. Jordanous (2012) also stated that CC
inclined towards the evaluation of the quality in compar-
ison to the evaluation of creativity. We observed similar
tendencies in the evaluation of musical agents.

There has been recent attempts to categorise the
evaluation methodologies for MuMe systems. Arges
et al. (2016) identified six types of external evaluations:

– Behavioural Tests
– Consensual Assessment Technique (CAT)
– Extensions within Computational Creativity
– Questionnaires, Correlational Studies and Rating

Scales
– Physiological measurements and neurophysiologi-

cal measurements

Regarding the evaluation of creativity, we observed
two common cases in the empirical evaluations of musi-
cal agents. In the first case, the authors evaluated the
systems from the user perspective. The participants were
expert users who tried the musical agent. Although these
evaluations did not necessarily follow the typical CAT
methodologies, we grouped them under the CAT cat-
egory since the participants were expert users. In the
second case, the authors evaluated a musical agent from
the perspective of the audience. In these evaluations, the
evaluation tools were questionnaires and rating scales.
Lastly, we observed only one system that incorporated
an evaluation methodology from CC. In the following,
we go into details of musical agent system evaluations on
creativity.

7.2.3.1. Consensual assessment technique. A group of
experts evaluate the creativity of MuMe systems in Con-
sensual Assessment Technique (CAT). In musical agents,
the expert evaluation refers to quantitative and qual-
itative empirical evaluations with expert participants,
and case studies. For example, the second evaluation
of VMMAS 1 (Vicari et al., 2005) studied a perfor-
mance session with software and human agents. The
human performer reported that the system was success-
fully accompanied with satisfactory rhythmic and har-
monic behaviour.

Navarro et al. (2016) presented an example of
mixed method empirical evaluation study with MUSIC-
MAS 6 that assists composers by generating harmony
progressions. The participants were novice composers

who were studying first year music theory at university.
The authors asked the participants to compose their first
piece using a harmony progression generated byMUSIC-
MAS. The participants rated each others’ compositions
as well asMUSIC-MAS’ success on assisted composition.
This evaluation concluded that MUSIC-MAS could help
novice composers by assisting composition tasks.

Murray-Rust and Smaill (2011) carried out several
case studies to evaluate their musical agent based on
MAMA 9 . The case studies were a duo of a human
performer and

– another human performer
– a recording of a human performer
– a musical agent without expressivity and

interactivity
– a musical agent mirroring the human input
– a musical agent including Musical Acts

However, this empirical evaluation concluded that the
introduction of Musical Acts did not significantly change
interactivity, competence and expressivity, and general
performance.

Linson et al. (2015) conducted two qualitative eval-
uations with Odessa 16 that is a mono-agent system
including machine listening. The first study included
eight expert musicians playing clarinet, trumpet, cello,
soprano saxophone, guitar, bassoon, piano and vocals.
Six of eight musicians reported ‘a process of familiarisa-
tion and improved collaborative engagement’ while two
musicians were highly dissatisfied. After the first eval-
uation, the authors added a module of excitation to
the architecture so that the system responds to higher
activities in the input. The second qualitative evaluation
had two expert musicians playing soprano saxophone
and guitar. These musicians also participated in the first
evaluation. The evaluation was a trio session including
Odessa. The musicians reported a ‘coherent identity’ of
Odessa regarding both evaluations.

Collins (2011) evaluated LL 25 with two expert musi-
cians. One of the experts was a percussionist whereas the
other one was a violinist. Both sessions were presented
as public concerts. The percussionist conceptualised LL
as the extensions of its programmer. The violinist men-
tioned the trade-off between the controllability versus
agency of the system.

Similarly, Aucouturier and Pachet (2005) pointed out
the trade-off between autonomy and reactivity in the
evaluation of Ringomatic 52 . The evaluation was a
case study of Ringomatic’s interaction with a human
drum player. The authors clarified that Ringomatic could
follow the human performer while preserving the global
continuity.
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Eigenfeldt and Pasquier (2011a) carried out a quan-
titative listening evaluation to evaluate Coming Together:
Free-sound 25 . Four soundscape compositionswere gen-
erated for the evaluation.One compositionwas generated
by the system. Another one was generated by random.
The remaining two were composed by an expert com-
poser. One of the human composed ones was freely
composed without constraints whereas the second one
was limited with database, methods of processing, over-
all duration, static spatial distribution of four gestures in
four channels. The evaluation survey questions focused
on the soundscape characteristics, compositional suc-
cess, skill level and subjective reaction. In all cases, the
system was better than the random generation.

Hawryshkewich et al. (2010) carried out a case study
with beginner drum players to test if Beatback 51 could
improve the self-directed learning of drum players. The
authors reported that ‘themajority of participants felt less
enjoyment andmore tension with drum zoning enabled.’

Surges and Dubnov (2013) tested the capabilities of
PyOracle 59 with a case study. PyOracle 59 was pre-
sented in a public concert as a performance with an
expert musician. The case study was a structured impro-
visation. Structured improvisation is free improvisation
with predefined constraints formusical sections. The case
study was a concert performance including a score for
both PyOracle and the human performer. The perfor-
mancewas followed upwith an interviewwith the human
performer. The performer emphasised that the flexibility
of PyOracle’s timing mechanism could be elaborated.

Sampaio et al. (2008) presented two empirical eval-
uations assessing the quality and diversity of CinBal-
ada’s 64 musical output. The first evaluation showed
that the participants preferred CinBalada’s output over
random generated or similarity-based rhythms. The sec-
ond evaluation concluded that the participants found the
diversity of CinBalada’s output not too distant from the
diversity of randomly generated rhythms.

In these evaluations, we observe that the details of
methodology are not clear and the justification of the
proposed methodology is missing. The main discus-
sions around the formalisation of expert studies are still
to be done in MuMe. Notice that, the evaluation of
Odessa 16 , LL 25 and PyOracle 59 were conducted
through post-performance interviews. These interviews
did not follow a typical qualitative methodology. Regard-
ing all CAT evaluations, the hypothesis is not clear and
the dimensions of evaluation are vague. The evaluations
are exploratory; however, this fact is implicit and there is
no justification ofwhy an exploratory approach is chosen.

7.2.3.2. Evaluation methodologies of Computational
Creativity. This type of empirical evaluations integrate

the methodologies of CC to evaluate MuMe systems.
Many evaluation methodologies have been proposed in
CC, such as Standardised Procedure for Evaluating Cre-
ative Systems (SPECS) (Jordanous, 2012), the Creative
Tripod (Colton, 2008) and FACE/IDEA model (Pease &
Colton, 2011). We have found only one study that incor-
porated a methodology from CC to evaluate musical
agents. Yee-King and d’Inverno (2016) usedMusicCircle,
a timeline-based tagging and annotation system to eval-
uate Speake-System 62 . The conclusion of the qualitative
study was that the system gave a strong sense of inter-
action; however, failed to generate long-term structures.
By no means this survey covers all discussions around
the assessment and evaluation of creativity and proposed
evaluation methodologies in CC. Still, only one study
incorporated a CC methodology to evaluate a musical
agent. Hence, this creates opportunities to integrate CC
evaluation frameworks to musical agents.

7.2.3.3. Questionnaires, correlational studies and rat-
ing scales. Surveys and questionnaires are one of the
main tools that musical agent developers use to evalu-
ate their applications. In comparison to CAT, the par-
ticipant group is not a group of experts in this type
of evaluations. We have found three systems with such
evaluations.

Murray-Rust et al. (2005) conducted a questionnaire
that is similar to the Turing Test (Turing, 1950) to evalu-
ate their rhythm generating system VirtuaLatin 18 . Tur-
ing test is one of the first methodologies that is proposed
to evaluate automatic agents. Murray-Rust et al. (2005)
concluded that the general public could not differentiate
the machine-generated rhythm from a human-generated
one while a higher percentage of expert listeners
could.

Delgado et al. (2009) evaluated Inmamusys 2 by gen-
erating four compositions with the input affective labels
worry, happiness, chaos and worry again. The partici-
pants labelled these compositions with affective states
of sadness, happiness, fear, worry, chaos, and indifference.
The authors reported that the participants affective labels
were in line with the input affect labels of the generated
compositions.

Kirke and Miranda (2015) conducted a listening test
with ten participants to evaluate MASC 77 . The evalu-
ation aimed to see if the affective states of single agents
could be observed in the melody output of the Multi-
agent system. The results indicated that the affective
states of single agents appeared in the final output. Still,
the authors mentioned that a following this first evalua-
tion with another one with more participants is required
to conclude on a significant result.
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Figure 21. The number of musical agents per architecture type.

7.3. Future steps of evaluation and benchmarking

We observe that the evaluations of musical agents apply
system specific methodologies. The dimensions of eval-
uations are not clear in most cases and the justification
of why a particular dimension of a system is evaluated
is missing. Given that the hypothesis and the method-
ologies of evaluations vary, no benchmarking tasks were
initiated for musical agents. An obstacle for benchmark-
ing is the reusability and code availability thatwemention
in Section 8.3.

The MIR field has developed a set of benchmark-
ing tasks and through the Music Information Retrieval
Evaluation eXchange (MIREX), the MIR field addresses
formally defined challenges. Musical agent researchers
could apply a similar approach for benchmarking. For
example, many systems tackle style imitation tasks and
it could be possible to benchmark these tasks. As of 2017,
Institute Neukom have sent a call forMusic Creative Tur-
ing Test 2018.12 This is a recent benchmarking attempt
for MuMe systems including musical agents.

Although we covered the musical agent evaluations
that applied consensual assessment technique, evaluation
criteria from Computational Creativity, questionnaires,
correlational studies and rating scales; we found no study
that applies behavioural tests, physiological and neu-
rophysiological measurements. behavioural tests assess

12 http://bregman.dartmouth.edu/turingtests/music2018

divergent thinking, convergent thinking, artistic abil-
ity and self assessment. Some examples of behavioural
tests in Music are Measure of Musical Problem Solv-
ing (Vold, 1986) and Measure of Creative Thinking in
Music II (Webster, 1987). Physiological and neurophysio-
logical measurements analyse the physiological response
of audience. Motion capture, eye tracking, galvanic skin
response, Electroencephalography (EEG) are the exam-
ples of tools to measure audience physiology. It could be
also possible to apply the measurement neural responses
of audience to evaluate the performance of a musical
agent. However, these technologies are particular to spe-
cific areas and applications, and they are not always
available in the institutes that research MuMe.

8. Ad infinitum

8.1. Architectures and algorithms

Figure 21 presents the number of systems for each archi-
tecture type. We observe that the number of reactive
musical agents is the highest, followed by the number
of hybrid musical agents. EC modules appear both in
reactive agents in real-world and virtual environments.
Moreover, cognitive modules show up in cognitive and
hybrid agents. However, the number of cognitive musical
agents is the lowest.

We have found only 16 implementations of musi-
cal agents with cognitive modules, including the hybrid
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Figure 22. The continuum of autonomy inmusical agent design.

musical agents with cognitive models (Figure 21).
Thórisson and Helgasson (2012) present the state of the
art cognitive architectures: Ymir, ACT-R, Soar, NARS,
OSCAR, AKIRA, CLARION, LIDA, Ikon Flux. Except for
CLARION, we have not encounter any study in which
any of these architectures are applied to a MuMe task.
Notice that, cognitive musical agent studies are challeng-
ing because applying a cognitive architecture to amusical
task requires the expertise in Music, Computer Music,
AI, MAS and Cognitive Science. Also, these cognitive
architectures are reasoning architectures and they are not
music cognition architectures. The research on Music
Perception and Cognition is still to be reflected to the
cognitive musical agent studies.

Regarding musical agent studies with statistical
sequence modelling, there is still more to be done to gen-
erate variety in longer musical sections. Pachet (2003)
and Assayag and Dubnov (2004) clarify that Markov
Models fail to represent the conditional probabilities of
sequences longer than the order. Hence, many of the sys-
tems presented in Section 6.1 do not include long-term
memory and one can argue that these systems fail to
produce variety in long-termmusical sections and struc-
tures. Dubnov et al. (1998) and Pachet (2003) address
this problem by introducing interactivity to Markov
Models. Hence, the generation of long-term structures
guided by a human performer. Improtek comes forward
with the idea of using scenario generation model, and
combining probabilistic methods with Factor Oracle is
another promising approach to generate long-term con-
tinuity (Déguernel, Vincent, & Assayag, 2018).

ANN algorithms are still to be examined by the musi-
cal agent developers. With the increasing research on
Deep Learning, a variety of new algorithms as well as
improvement of the previous algorithms are presented
in the literature (Arel, Rose, & Karnowski, 2010). Briot,
Hadjeres, and Pachet (2017) surveyed Deep Learning
approaches for musical tasks. Although these systems are
mostly purely generative systems, it is possible to incor-
porate these approaches with MAS to develop musical
agents. Moreover, we have found only one study (sys-
tem 67 mentioned in Section 6.3) that evolves ANN
modules using NeuroEvolution of Augmenting Topolo-
gies (NEAT) (Bown, 2011). NEAT combines ANN with
EC to evolve ANNmodules.

Genetic Programming (GP) is a type of EC algorithms.
We have not found any musical agents applying GP in

the system design. GP, especially Cartesian Genetic Pro-
gramming (CGP), has been applied to image recogni-
tion (Harding, Leitner, & Schmidhuber, 2013) as well
as style imitation in Visual Arts (Miller, 2011). More-
over, Wooldridge (2009) proposes the idea of synthe-
sising agents. In all musical agent systems that we have
covered, the authors develop the systemsmanually. Auto-
matic musical agent design is possible using GP and CGP
algorithms. GP and CGP have been applied to synthesise
audio synthesis architectures (Allik, 2014; Garcia, 2001;
Macret & Pasquier, 2014; Takala, Hahn, Gritz, Geigel, &
Lee, 1993; Wehn, 1998). It is possible to improve the
automatic audio synthesiser design systems to synthesise
musical agents.

8.2. Interdisciplinarity ofMuMe

While the International Workshops onMusical Metacre-
ation13 have covered MuMe topics for five MuMe work-
shops, five MuMe concerts, and three MuMe tutorials
since 2012; the topics of MuMe field has been covered by
various platforms such as International Computer Music
Conference,14 the International Symposium for Music
Information Retrieval,15 the Sound and Music Comput-
ing,16 the Association for Computational Creativity,17
the International Computer Music Association,18 the
International Conference on New Interfaces for Musical
Expression,19 Live Coding,20 the International Sympo-
sium for the Electronics Arts,21 the conferences held
by the Association for the Advancement of Artificial
Intelligence.22

In some cases, the success of MuMe systems are
dependent on the advances in other disciplines. For
example, many agents working with audio or hybrid I/O
includemachine listening. Examples ofmachine listening
tasks are tempo estimation, fundamental pitch detection,
sound similarity, rhythm similarity, melody similarity,
affect estimation in sound, chord analysis, audio thumb-
nailing, novelty detection, etc. The MIR field addresses
these tasks and many are still open research questions.
By default, the success of musical agents with machine
listening relies on the quality of the machine listening
algorithm. Hence, these musical agents are dependent on
the advances in MIR studies.

13 http://musicalmetacreation.org/
14 http://computermusic.org/
15 http://www.ismir.net/
16 http://smcnetwork.org/
17 http://computationalcreativity.net/home/
18 http://computermusic.org/
19 http://www.nime.org/
20 https://toplap.org/
21 http://www.isea-web.org/
22 https://www.aaai.org/
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Therefore, the MIR and MuMe fields naturally bene-
fit from each other by putting forward new problems and
solutions. For example, MuMe uses advanced technolo-
gies of MIR in machine listening and automatic extrac-
tion of higher level music features. Also, musical agents
can utilise the recent developments in Affective Comput-
ing in Sound and Music (Eerola & Vuoskoski, 2013; Fan,
Tatar, Thorogood, & Pasquier, 2017) in machine listen-
ing modules of musical agents. Other MIR areas are also
valuable to musical agents such as musically informed
audio decomposition, tempo and beat tracking, chord
recognition and music structure analysis (Müller, 2015).
Likewise, MIR can take advantage of theMuMe research.
For example, Collins (2017) proposed autonomous critic
agents in the assessment ofmusical style, novelty, or qual-
ity. Collins (2017)’s study proposed a model for critic
agents that have listened to more music than humans
could. Such critic agents can be explored for the tasks of
recommendation systems in MIR.

8.3. Design considerations

The developers of musical agents create a system archi-
tecture by going through a design process. Autonomy in
musical agent design ranges from encoded systems to
agent synthesis (Figure 22). The developers design the
system architecture manually in the encoded and heuris-
tics systems. In comparison, agent synthesis is com-
pletely autonomous (Wooldridge, 2009) and can gen-
erate musical agent architectures. We propose to refer
to the phenomena of agent synthesis as Metacreation
of Metacreation (Meta2creation). We claim that Musical
Meta2creation is developing systems that create systems
that partially or completely automatise musical tasks.

Machine Learning lies in the middle of the autonomy
continuum in the musical agent design. The developers
of musical agents often incorporate Machine Learning in
their system design. Machine Learning algorithms have
parameters to be set by the developers. For example, an
EC algorithm has genetic operator probabilities that set
the chance of applying the genetic operators to an indi-
vidual. Another example is the highest order parameter
in Variable Markov Models. The developers often set
these parameters by listening to the system output for
various parameter options. This process is addressed in
theMachine Learning as InteractiveMachine Learning or
User-Centered Machine Learning (Bernardo, Zbyszyn-
ski, Fiebrink, & Grierson, 2016; Gillies et al., 2016). The
research on the procedures, tendencies and underlying
factors of developing musical agents is still to be done.

We have encountered three recent studies that stud-
ied the design principles of Computational Creativity
(CC) systems including musical agent systems (Bray and

Bown, 2014, 2016; Bray, Bown, & Carey, 2017). First,
Bray and Bown (2014) compare user experience of a
DAW and the musical agent Nodal 42 . Second, Bray and
Bown (2016) propose applying the Interaction Design
theory to CC systems. Third, Bray et al. (2017) compared
three generativemusic systems to understand the effect of
the degree of encapsulation in MuMe systems. The study
included a direct manipulation system, a programmable
interface system and a highly encapsulated system.

Reusability and code availability is another issue of
musical agents. Out of 78 systems, the source codes of
18 systems (23%) are available to the public (Table 1).
This makes the comparison of different musical agents
difficult. Addressing this issue, the manifesto of Muse-
bot framework encourages making musical agents open-
source by publicly sharing the code of the framework
and submitted musical agents (Bown, Carey, & Eigen-
feldt, 2015). Musebot project is a framework for musical
agents which allows interactive live performances with
human performers and multiple musical agents (Eigen-
feldt, 2016b; Eigenfeldt, Bown, & Carey, 2015). The sys-
tem design of the framework is the client/server archi-
tecture in MAS. As of 2017, Musebot framework is com-
patible with MAX, Max for Live, PureData, Process-
ing, SuperCollider, Python, Extempore and JAVA. The
framework provides exciting opportunities such as col-
laborative performances of various musical agents and
autonomous curation of musical agent ensembles. The
Musebot framework provides an opportunity to create a
public repository of musical agents.

Table 1 shows which systems have been presented to
the publicwithin our knowledge.We also include systems
implementing assisted composition tasks, if the systems
have been used to produce a composition that is pre-
sented to the public. Out of 78 system, 39 systems (50%)
have been presented in public venues. Musical agents can
aim for increasing the percentage of systems available to
the public.

8.4. MuMefication

8.4.1. MuMe as a field
There is an objective evidence that MuMe is an interdis-
ciplinary field. In a recent paper devoted to this topic,
Bodily and Ventura (2018) clarify that total 80 papers
were published in the 5 MuMeWorkshops between 2012
and 2017. These papers had a total 111 authors. Out of
these 111 authors, 88 (79.2%) published only once, 13
(11.7%) published twice and 8 (7.2%) published three or
more times inMuMeWorkshops. Out of these 80 papers,
36 of them had 173 external citations in total. In compar-
ison, there were only 13 instances where MuMe papers
cited other MuMe papers. The higher rate of external
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citations in comparison to internal citations of MuMe
publications, and low re-publication rate of authors indi-
cate thatMuMe is a growing interdisciplinary field. (Bod-
ily&Ventura, 2018)mention that the external citations of
MuMepapers appeared in papers presented in a variety of
venues such as the International Conference on Compu-
tational Creativity (ICCC); Computers in Entertainment
(CIE); the Computer Music Journal (CMJ); the Sound
andMusic Computing Conference (SMC); and the Inter-
national Computer Music Conference (ICMC).

We propose that MuMe as an interdisciplinary field
inherits both practice of generative music whether it is
artistic, heuristic, creative AI; as well as the scientific
study of Computational Creativity for musical creative
tasks. We think that the term MuMe can provide a for-
malisation of such systems using the definitions and ideas
of Computational Creativity, Generative Art and Artifi-
cial Intelligence. We propose that MuMe as an interdis-
ciplinary field aims to bring together all fields that apply
autonomous approaches for creative musical tasks. Our
definition of MuMe as a field is inclusive in the sense that
it is not creative musical AI because it is not always AI,
it is not a simulation of musical creativity because MuMe
can also cover creativity as it could be, it is not necessar-
ily live-coding becauseMuMe systems are not necessarily
performed live, it is not artificial life because it also cov-
ers systems that do not simulate a virtual environment. In
addition, we think that CC literature gives an established
ground to explain whether MuMe systems are musically
creative, and if they are, the kind of creativity that MuMe
systems output.

8.4.2. A typology of MuMe systems
The discussion around the typology of MuMe systems
is still ongoing. Eigenfeldt, Bown, Pasquier, and Mar-
tin (2013) propose a taxonomy of MuMe systems in
seven levels of independence, compositionality, gener-
ativity, proactivity, adaptability, versatility and volition;
ordered from least autonomous to the most. Based on
these seven levels ofMuMe systems, we propose six levels
of musical agents which are ordered from the lowest level
to the highest one:

(1) Reactivity: Agents respond to the changes in the
environment in a timely fashion.

(2) Proactivity: Agents can perceive their environment
and plan future actions.

(3) Interactivity: Agent can interact with other agents
(human, artificial, or biological).

(4) Adaptability: Agents learn from their environment
to improve competence or efficiency.

(5) Versatility: Agents are domain independent.

(6) Volition and framing: Agents can explain why
they choose certain actions when asked by other
agents.

The higher levels can inherit properties of the lower
levels whereas the lower levels cannot present the dis-
tinctive properties of the higher levels. Many agents that
we cover demonstrate reactivity behaviours. For example,
Odessa 16 can react to the musical actions of other per-
formers. Odessa also exhibits interactivity by influencing
other agents by actions.Odessa diverges from the current
state of the environment if other agents fail to gener-
ate variability. However, Odessa does not learn from the
environment. In comparison, system 69 exhibits adap-
tivity by training the SOM in the architecture online. The
musical agents that are free of the author’s style or choice
show behaviours of Versatility. For example, the Contin-
uator 50 is a flexible agent that imitates the style of any
performer.

Although the author’s style is not explicitly embedded
in the Continuator, one can argue that by just choos-
ing one generative algorithm over the other, the authors
make implicit stylistic choices on the design of the musi-
cal agent. Thomas et al. (2013) studied the bias of three
style imitation algorithms in melody generation. The
authors compared VMM, FO andMusiCOG 8 and con-
cluded that each algorithm introduced a particular bias
to the melody generation. One can argue that the Con-
tinuator is not completely independent of the author’s
style because the author made the decision on the gen-
erative algorithm that was used in the system design.
Hence, the selection of one melody generation algorithm
rather than others introduced a particular bias to the
Continuator.

The taxonomy of Eigenfeldt et al. (2013) distinguish
MuMe systems based on the dimension of autonomy. In
comparison, Blackwell et al. (2012) propose a taxonomy
of MuMe systems by focusing on the system architec-
ture. The authors propose a new term: live algorithms.
Live algorithms include musical agents as well as purely
generative music systems that do not utilise any input in
the system design. The authors clarify four main inter-
action types of Live Algorithms: autonomy, novelty, par-
ticipation and leadership. The authors present eight case
scenarios of system designs. Each case has a different
combination of incoming audio stream, outgoing audio
stream, human control and three modules of P (listen-
ing/analysis), Q (performing/synthesis) and f (pattern-
ing, reasoning, or intuition). Moreover, the authors state
four types of LiveAlgorithmbehaviours: shadowing,mir-
roring, coupling and negotiation. The authors continue
by presenting implementations of Live Algorithms and
further considerations.
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8.5. Challenges and opportunities

There are several reasons why the research and devel-
opment of generative systems and musical agents
matter. The main usage of computational systems
has shifted from rational problem solving. With the
increasing number of personal computational systems,
the percentage of computational power that is used for
entertainment, art and culture increased rapidly.

As a result, the demand for generative systems includ-
ing musical agents in the creative industries escalated.
This demand arises from the growth of non-linearmedia.
Non-linear media enable users to choose from the avail-
able options in the media. Hence, non-linear media
are interactive by nature. Two examples of non-linear
media are games and websites. The workload to gener-
ate content for non-linear media is vastly greater than
the workload of linear media production. Hence, there is
an increasing demand for autonomous, adaptive systems
that can fulfil the requirements of non-linear content. In
that sense, we can use musical agents in the industry of
non-linear media as adaptive and autonomous systems
making music. Moreover, these autonomous systems can
enable the personalisation of the content. That is, the soft-
ware can adapt to the user’s specific choices, aesthetics
and requirements.

MAS are applied to simulate real-world phenom-
ena. We can apply musical agents to simulate and study
musical phenomena. Using such simulations, we can
model and study (software or human) agent interactions
and emergent behaviours in musical tasks. In MuMe,
this is referred as modelling creativity as it is (Pasquier
et al., 2017). These simulations can help understanding
how we make music.

In comparison to musical creativity as it is, musical
agents introduce new opportunities for the exploration
ofmusical creativity as it could be. One advantage of soft-
ware agents is that agents can both play music, listen and
exchange messages about their beliefs, desires and inten-
tions during a performance. The rate of communication
can be much higher than that of human communication.
Also, software agents can be shared easily over the inter-
net and this creates new collaboration opportunities that
go beyond logistic restrictions such as the location and
attendance of performers.

Wiggins (2006a) formalises Boden (2015)’s definition
of creativity with a framework called Creative Systems
Framework (CSF). CSF also includes a conceptual space,
a rule set that defines the conceptual space, a rule set that
defines how agents can traverse the space, an evaluation
rule set that assesses the value and novelty of concepts.
Wiggins (2006a) concludes that exploratory creativity
at the meta-level is, in fact, transformational creativity.

Hence,Wiggins (2006a) emphasises search approaches in
Computational Creativity studies.

VMO, FILTER and MASOM are three systems that
apply the idea of search in the conceptual space. These
systems define a conceptual, multi-dimensional musical
space. The dimensions of the space are audio features,
i.e. sound properties. MASOM applies VMM, and FIL-
TER implements FO for statistical sequence modelling.
VMO is a model that combines VMM with FO. Fol-
lowing their work on VOM, Wang and Dubnov (2017)
combine HMM and VMO for the MuMe task of har-
mony generation. Although this work applies style imi-
tation with symbolic representation of music, Wang and
Dubnov (2017) compare VMO with HMM-GMM and
K-Means machine learning algorithms. Wang and Dub-
nov (2017) conclude that in the conceptual feature space,
VMO models temporal relationships whereas HMM-
GMM and K-Means clusters spatially.

VMO, FILTER and MASOM define the musical form
as a traversal in this multi-dimensional space. Since
we can mathematically model a traversal in a multi-
dimensional space, twoMetacreative opportunities arise:
style combination and style transformation. Style com-
bination is combining different attributions of styles to
come up with a new style. This corresponds to com-
binational creativity in Boden’s taxonomy of creativity.
However, we do not know if the process of combining
styles is linear in mathematical forms. If we combine
two styles, do we explore a region that is an intersec-
tion for these two styles? A generalised version of this
question is, how do we traverse the conceptual musical
space by combining different attributions of two styles?
Style transformation is applying a transformation func-
tion to a style to come up with another style or a new
style. If we can model musical form and musical style
mathematically, we can also define a function that trans-
forms one style to another. We can also explore variety of
transformation functions to research new styles.

The algorithms that we cover in this survey introduce
biases and some of these biases have been pointed out
in the literature. Thomas et al. (2013) compares Markov
Models, FO, and MusiCOG 8 on the task of melody
generation and concluded that Markov Models and FO
deviated from the training corpus. This indicates that
the authors ofMetacreative systemsmay introduce biases
to the creative output of their systems by choosing one
algorithm over others. Further research is required to
clarify what kind of transformations machine learning
algorithms introduce to musical agents as well as MuMe
systems. Then, we could approach these algorithms as
transformation functions that we apply on musical cre-
ative tasks.
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9. Conclusion

Autonomous computational systems have been applied
to various musical tasks. MAS and Artificial Intelli-
gence technologies exemplify autonomy in computa-
tional systems. Musical agents utilise artificial agent
architectures and MAS to automatise musical tasks
of composition, assisted composition, interpretation,
improvisation, accompaniment, melody, rhythm, and
harmony generation, continuation, style imitation,
arrangement, curation. We surveyed 78 musical agents
systemswhose architectures have been presented in peer-
reviewed platforms. We proposed a typology of musical
agents that is framed around the terminologies of Gen-
erative Music, Computational Creativity, Artificial Intel-
ligence, Metacreation and Musical Metacreation fields.
This typology presentsmusical agents in nine dimensions
of agent architectures, musical tasks, environment types,
number of agents, number of agent roles, communica-
tion types, corpus types, input/output types and human
interaction modality. Our survey has given the details
of musical agents by grouping the systems according to
the architecture types. We incorporated the architecture
types of cognitive, reactive and hybrid architectures in
MAS to classify musical agents. We further categorised
musical agents using the architecture model paradigms.
As a special case, we also used environment types to
further group the reactive musical agents. Within each
section, we grouped musical agents by the musical task
that they carry out. We hope that this organisation of
the survey guides the reader to have an understanding
of what has been done in the interdisciplinary field of
musical agents.

We mentioned in Section 2 that creative tasks lack
qualitymeasures, which highlights the difficulties of eval-
uating musical agents. We suggested a classification of
evaluation of musical agents where the specific evalua-
tion methodologies of systems that we survey is incorpo-
rated to the corresponding classes. We ended this section
by highlighting a possibility of benchmarking tasks for
musical agents. We started our final section with an over-
look of architectures and algorithms that have been cov-
ered by musical agents, which indicate the opportunities
of different architecture types that can be applied tomusi-
cal agents. Towards our conclusion, we introduceMusical
Metacreation as a field, mention the interdisciplinarity of
the field and design consideration of MuMe systems. We
proposed six levels of musical agents, which is a deriva-
tion of seven levels of MuMe systems proposed in the
literature. Before conclusion, we remark the challenges
and opportunities in musical agents, and indicate sev-
eral reasons why the research of musical agents as well
as MuMe matters.

The studies of MuMe field aim to guide musicians
and artists to understand musical creativity and find new
ways of musical creativity. We hope that this review of
musical agents helps both researchers and practitioners
to understand and design autonomous software making
music. Almost all studies mentioned in this review are
presented in the last two decades. With the increasing
research on MAS and AI, we are confident that musi-
cal agents will influence and contribute to how we make
music in the future.
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