
ViVid: A Video Feature Visualization Engine

Jianyu Fan1(&), Philippe Pasquier1, Luciane Maria Fadel2,
and Jim Bizzocchi1

1 Simon Fraser University, Vancouver, Canada
{jianyuf,phillipe.pasquier,jimbiz}@sfu.ca
2 Federal University of Santa Catarina, Florianópolis, Brazil

liefadel@gmail.com

Abstract. Video editors are facing the challenge of montage editing when
dealing with massive amount of video shots. The major problem is selecting the
feature they want to use for building repetition patterns in montage editing. It is
time-consuming when testing various features for repetitions and watching
videos one by one. A visualization tool for video features could be useful for
assisting montage editing. Such a visualization tool is not currently available.
We present the design of ViVid, an interactive system for visualizing video
features for particular target videos. ViVid is a generic tool for computer-
assisted montage and for the design of generative video arts, which could take
advantage of the information of video features for rendering the piece. The
system computes sand visualizes the color information, motion and texture
information data. Instead of visualizing original feature data frame by frame, we
re-arranged the data and used both statistics of video feature data and frame level
data to represent the video. The system uses dashboards to visualize multiple
dimensional data in multiple views. We used the project of Seasons as a case
study for testing the tool. Our feasibility study shows that users are satisfied with
the visualization tool.

Keywords: Video features � Data visualization

1 Research Topic

Generative video refers to creating videos using generating systems [1]. Potentially,
multiple results can be produced, because a generative video is built using montage
editing to connect shots and transitions that are drawn from a database. We present the
design of the ViVid, which is a generic system for video feature visualization. We
present a case study about “Seasons1”, a generative media project, which uses a variety
of computational processes to build the audio-visual output. “The system for Seasons
builds video sequencing and transitions based on procedural rules and video metatags.
Simultaneously, the system composes and mixes music and soundscape tracks that
incorporate both semantic and affective elements of the video into their own aesthetic
rules.” [2].

1 Seasons is a generative video from Simon Fraser University Generative Media Project coordinated
by Jim Bizzocchi, Arne Eigenfeldt, Philippe Pasquier, and Miles Thorogood.

© Springer International Publishing AG 2017
A. Marcus and W. Wang (Eds.): DUXU 2017, Part III, LNCS 10290, pp. 42–53, 2017.
DOI: 10.1007/978-3-319-58640-3_4



2 Film Editing

In film editing, there are two techniques widely used. The first is continuity editing,
which uses sequences of shots to create a sense of real-time and mask the time and
space. For example, a filmmaker wants a scene in which a person is cutting trees. The
first shot shows the entire tree. When the person is about to cut the tree, the shot turns
to the middle view. It becomes the close view when the axe is on the tree. This
three-shot sequence is an example of continuity editing.

Another widely used technique is Montage editing. A “montage sequence” is a
short segment in a film in which narrative information is presented in a condensed
fashion” [3]. It has been used in various genres, such as science fiction, silent film,
propaganda, sports, commercials, and city films. In the movie 2001: A Space Odyssey,
the director depicted the development of a man evolved from apes to humans. For each
shot, the creature evolves to a higher stage. This montage sequencing is based on the
concept of evolution and time.

In the silent film, Battleship Potemkin, which is directed by Sergei Eisenstein, the
montage theory was tested. Different types of montages were used, such as metric
montage, rhythmic montage, tonal montage, over-tonal montage and intellectual
montage, [4].

• Metric: The length of video segments follows the number of frames
• Rhythmic: The length of the shot suggests a pattern and the cutting points create

visual continuity
• Tonal: Each shot reflects certain emotions to enhance the emotional experience in

the viewers
• Overtonal: It is a combination of metric, rhythmic, and tonal montage
• Intellectual: It uses a combination of shots that are not from the original film to

create new meanings

As for Olympic propaganda films, directors not only used sequences of shots of
different athletes to show the diversity of the Olympic games, but also used the different
stage of competitions to tell audiences the opening of the Olympic game. They used the
concept of sport, development, and emotion, to build their sequences. This is an
example of Overtonal montage.

Motion is widely used in the montage sequencing. In the city documentary Berlin
Symphony of a Great City, the director used a sequence of shots containing objects
moving in the same direction to indicate the train is coming to Berlin. This is an
example of Rhythmic montage.

Other features have been used in montage editing include color, shape, texture,
scale, photographic, focus, visual complexity, motion intensity, content, and emotion.
Our system can be an assistant tool for selecting features and videos for montage editing.

2.1 Video Data

We extracted video feature data of the Seasons’ video database. Original videos have
the resolution of 1920 � 1080, which cause a massive amount of computation

ViVid: A Video Feature Visualization Engine 43



regarding feature extraction and data visualization. We lower the resolution of video
and extract features. Since there are many dimensions in video features, we separate
video features into three categories including color, motion, and texture features. We
used Matlab2 to extract RGB and HSV values as color features, which are represented
as a 2D chart, where the horizontal axis shows the frames and the vertical axis shows
the value, as shown in Fig. 1. Matlab also extracts optical flows as motion features and
represents this feature in each frame using directional lines as shown in Fig. 2.

We argue that these forms of visualization are not intuitive for users. To address
this problem we selected only hue, saturation, and brightness, which we believe are
more related to human perception of colors. Also, we rearrange the original video
feature data for better visualization. It is hard to visualize each feature dimension frame
by frame in real time. Therefore, we use probabilistic distribution to represent hue,
saturation, and brightness. For motion features, we calculated the motion intensity
value, motion direction value per frame and overall motion direction of the entire
video. The motion intensity data is frame level data. That is also the case of texture
feature visualization, which was represented using entropy and contrast. For texture
features, we used entropy and contrast.

With both frame level feature data and statistics feature data of the entire video,
users can have a macro view of the whole video that saves more time and has the micro
observation of details of features. All the video features are extracted by using Matlab.

Fig. 1. A simple visualization of original color feature data of a target video (Color figure
online)

2 Matlab is a developed by Mathworks.

44 J. Fan et al.



We rearrange the original video feature data by using multi-view and representing each
feature based on its probability distribution.

3 Method

We adopted the design science research, which is a method that addresses the devel-
opment of an artifact while enables the researcher to learn a certain phenomenon [5].
Vaishnavi and Kuechler [6] suggested the design cycle used in this paper, which is
composed of the following process steps: awareness of the problem; suggestion;
development; evaluation; and conclusion.

The first step of the method involves the understanding the problem and the def-
inition of the performance for the system. To do that, we adopted a systematic literature
review. During the suggestion phase, we suggested a tool built based on multidi-
mensional views of the multimodal data. The ViVid engine was developed based on
bar charts visualization of saturation and brightness, radar visualizations for hue and
overall motion direction, line graph visualization for motion intensity, pointer visual-
ization for motion direction every frame, and bar charts visualization of contrast and
entropy. The usability evaluation phase was conducted with montage editors, and the
analysis of the results is written in the conclusion phase.

3.1 Related Works

The systematic literature review was performed in electronic databases: ACM library
and Science Direct. As inclusion criteria, we opted only full papers published in the last
five years. The keywords were chosen based on previous literature review and were
defined as: Data visualization “AND” video feature, multiple windows “AND”

Fig. 2. Simple visualization of original motion feature data of a video (optical flow) (Color
figure online)

ViVid: A Video Feature Visualization Engine 45



visualization, which should appear in papers’ title, keywords or abstract. In addition,
only Arts and Humanities, Computer Science and Design sources were considered.
Table 1 shows the quantity of papers found in each database and the quantity of papers
selected for full reading after analyzing their abstract and relevance to this paper.

The problem of visualizing data extracted from videos is understood as visualizing
multimodal data. For example, Rashid et al. [7] proposed a graph-based approach for
visualizing and exploring a multimedia search result space. They explored the idea that
each media can be accessed through different modalities (i.e., visual, acoustic or tex-
tual) depending on the considered low-level features or on the available metadata
extracted from or associated with it. Their interface is composed of five panels: one for
input and is a text window (query); one for the result of the query, which is also a text
window; the next panel shows thumbnails of all media objects contained in the
retrieved documents; for the media selected is possible to listen, watch or view; and
finally a graph panel represents the selected media objects and its semantically related
media objects. Multiple views are also used by Chandrasegaran et al. [8] to create a
visual analytics framework named VizScribe that employs multiple coordinated mul-
tiple views that enable the viewing of multimodal data, such as audio, video, and text.
Their interface layout is divided into two main sections: temporal view (time-series
data) and transcript view (text). These data are displayed as interactive timeline views,
such as video progress, transcript visualization, and sketch timeline. Video data is
designed to answer the question: “what was happening when…?”. The temporal view
pane thus includes a video playback interface, with time encoded as a progress bar
spanning the width of the pane.

Different signals and rates can also be synchronously visualized, played and
re-arranged using the web interface by Mayor et al. [9]. They created the repoVizz,
an integrated online system capable of structural formatting and remote storage,
browsing, exchange, annotation, and visualization of synchronous multimodal, time-
aligned data (audio, video, motion capture, physiological signals, extracted descriptors,
annotations, etc.).

Other approaches to visualize video data take advantage of the data available from
image domain. Liu and Shi [10] represented each frame by high-level attributes rather
than visual features. They proposed a novel sequence for sequence architecture by
using a pre-learnt image-captioning model to generate for video-description. Video
sequencing can also be seen as synthesized visual storyline. Chen et al. [11] used
clustering and automatic storyline extraction to generate these storylines. Video
sequencing is a problem of detecting screen shot boundaries, which divides a video into
groups with spatio-temporal similarities. Bhattacharya et al. [12] proposed a method to

Table 1. Distribution of papers after applying the filters

Database Data visualization “AND”
video feature

Selected for
reading

Multiple window
visualization

Selected for
reading

Science direct 41 2 75 0
ACM library 96 5 41 1
Total 137 7 116 1

46 J. Fan et al.



detect these boundaries and to generate video storyboards using the local features as
well as the global features presented in the scene. Their method reserves the continuity
by ensuring at least one frame from each shot avoiding scene kipping.

The content of a video can also be detected in real time. Tanase et al. [13] created
the IMOTION, which is an interactive video retrieval system that offers a sketch-based
user interface. The system recognizes in real-time the user’s sketch and makes sug-
gestions based both on the visual appearance of the sketch and semantic content.

4 Design Strategy

Based on the literature review, and given the multi-dimensional video feature data, we
suggested multidimensional views and balanced spatial and temporal benefits using
multiple views. ViVid is a tool created based on bar charts visualization of saturation
and brightness, radar visualizations for hue and overall motion direction, line graph
visualization for motion intensity, pointer visualization for motion direction every
frame, and bar charts visualization of contrast and entropy. We listed the features that
we used below.

• Color: Red, Green, Blue, Hue, Saturation, and Brightness.
• Motion: Motion Intensity, Motion Direction.
• Texture: Entropy, Contrast.

The background color is set to white so that it contrasts sufficiently with the object.
As for each graph, we utilize different colors because they correspond to different
meanings in the data [14]. We adjust the size of each graph so that viewers can observe
both details and macro information. We use perceptual techniques to focus user
attention. For example, we select the color that has highest hue value within the hue
wheel as the color for making saturation bar chart, brightness bar chart and motion
direction radar graph. This also keeps views and state of multiple views consistent. For
motion direction, we use the same dataset but different encoding including frame level
motion direction visualization and overall motion direction visualization. Users have
the freedom to control the tool, load database, load target video, play and pause the
video and visualization. The video feature extraction is implement in Matlab. The
ViVid system is implemented in Java.

4.1 Color Feature Visualization Interface

When a user clicks the “Color” button on the left corner, the interface will appear.
Figure 3 shows the result. The video player will play the video frame by frame (2 frame
per second in the target video). Color feature is represented using hue, saturation and
brightness features.

Hue is defined as “the degree to which a stimulus can be described as similar to or
different from stimuli that are described as: red, orange, yellow, green, blue, violet”
[15]. Because the hue is usually described using a wheel, for hue value visualization,
we adopted a radar graph to visualization overall hue value, which is the average of

ViVid: A Video Feature Visualization Engine 47



every frame of a target video. We separated the hue wheel into 24 parts. In each part,
we use inner circles to represent the number of pixels that have corresponding hue
value. The highest value is normalized to 1. Between each circle in the concentric
circle, the distance is 0.1. In Fig. 3, we can see that the highest hue value is light green,
which is 1. The same normalization process is used to other values such as saturation,
brightness, and motion direction. Once the system has found the highest hue value, it
extracts the saturation and brightness values for this specific color. This brings users a
consistent feeling of color style when watching the video and the visualization together.
We normalized the biggest value of hue to 1 and made the visualization within a circle
that is not big. Though it makes that the small hue value hard to be observed, it
provides a better layout for users.

Saturation is the level of colorfulness, which also represents the level of purity of
the color. The higher saturation value indicates less missing of colors. If we mix more
colors together, the purity will decrease, and the picture will turn gray. We define the
range of saturation value between 0 and 100 and separate the level of saturation into 16
parts, which is not too dense or sparse. The horizontal axis corresponds to each level of
saturation, and the vertical axis represents the percentage of pixels that have the cor-
responding saturation value.

Brightness feature represents the level of a source appears to be radiating or
reflecting light, which is the perception elicited by the luminance of a visual target [16].
Similar to saturation, we separated the brightness value into 16 parts. The horizontal

Fig. 3. Interface of color feature visualization (Color figure online)

48 J. Fan et al.



axis corresponds to each level of brightness, and the vertical axis represents the per-
centage of pixels that have the corresponding brightness value.

4.2 Motion Feature Visualization Interface

While the color feature is presented based on its statistics and distribution, motion
feature is visualized based on each frame. We use real-time data to visualize the motion
intensity and motion direction per frame. In addition, we used the statistics of motion
direction to represent the overall motion direction of the video.

Motion Intensity is the level of motion between frames within the video. We used a
timeline based line graph visualization for motion intensity [15]. This allows the
viewers to observe the motion intensity and its variation within the video. The timeline
of the video player is horizontally aligned with the timeline of the motion intensity
graph. The vertical axis indicates how intense the motion is. We separate the vertical
axis into four sections, including low motion, medium motion, high motion and super
high motion; each section is highlighted by an individual color. Rule of the separating
point is based on the multiple observations of visualization of many videos. The
horizontal axis represents time (Fig. 4).

Fig. 4. Interface of motion feature visualization (Color figure online)

ViVid: A Video Feature Visualization Engine 49



The bottom right corner shows the duration of the video. Since we want the user to
compare the image of the frame and the feature of the frame at the same time, we used a
pointer to connect the timeline with the horizontal axis of the motion intensity line
graph. Each dot on line graph is corresponding to the time point of the video player.
We enable the user to pause the player so that the user can view the feature data and
image carefully. In the original data extracted by Matlab, we have optical flow vector of
every moving point. To make a trade off and provide more useful information to users,
we use statistics of the motion data of both frame-by-frame and overall video.

The motion direction can be defined using 360°. Therefore, we use the radar
visualization for overall motion direction data, which is the average of every frame in a
video. We separate 360° into 24 parts. We detect optical flow vectors and obtain its
absolute value and its angle. Then we accumulate the optical flow vector value in each
direction among 24 parts frame by frame and obtain the average motion direction value
for an entire target video. In each part, we use the length of the radius of an arc to
represent the number of pixels that moves toward the corresponding direction. When
considering the absolute value, values of certain parts will be high and take space.
Therefore, the biggest value of the motion direction is normalized to 1 to save space.
Though it makes that the small hue value hard to be observed, it provides a better
layout for users.

Because the user needs to observe the arc of motion direction within the video, we
added motion direction per frame graph. This graph doesn’t involve any intensity data
but direction. When the video is playing, the pointer will move frame-by-frame to
indicate the direction of the video.

4.3 Texture Feature Visualization Interface

We chose to visualize the entropy and the contrast feature to provide the information of
texture of the video to users. Texture feature visualization is based on each frame. We
used the distribution of texture features to represent the video (Fig. 5).

Entropy represents the level of randomness. Specifically, in image processing,
entropy is a measure of the amount of information, which must be coded for by a

Fig. 5. Visualization of the entropy feature (Color figure online)

50 J. Fan et al.



compression algorithm. If the image has higher entropy, such as an image of flowers, it
contains more information. Low entropy images, such as those containing a white wall,
have less information. Therefore, the high entropy images cannot be compressed as
much as low entropy images. Similar to motion intensity, we used timeline based line
graph visualization for entropy, which allows the visualization of this evolving entity
over time. This allows the viewers to observe the change of entropy. The timeline of
the video player corresponds to the timeline of the entropy graph. The vertical axis
indicates how high the level of entropy is. We separate the vertical axis into six
sections, including low, medium-low, medium, medium-high, high and super high;
each section is highlighted by an individual color. The idea of the design is similar to
the motion intensity (Fig. 6).

Contrast indicates how distinguishable regarding color that objects are within an
image. This property is determined by the difference of color between the objects
within an image. Similar to the design of visualization of Entropy, we used timeline
based line graph visualization.

5 Usage, Feasibility Study and Considerations

The ViVid engine was built to help editors during the montage phase of a video. Thus,
the system extracts and presents hue, saturation, brightness, motion direction and
texture of a shot using multiple views. The interface was designed to focus attention on
these data. The ViVid engine was used for the creation of the automatic music video
generation system, DJ-MVP [17]. The systems used a color heuristic method for video
selection. The target video segment is either closest or the furthest in the HSV color
space to the previous video segment. This mechanism enabled the generative video to
become more diverse regarding color. Examples can be found online.3

To evaluate the system, we conducted a feasibility study to understand how intu-
itive the interface is perceived by the users. The study was carried out at Simon Fraser
University, and the system was presented using a 60” TV. Eight people were asked to

Fig. 6. Visualization of the contrast feature (Color figure online)

3 https://vimeo.com/channels/djmvp.

ViVid: A Video Feature Visualization Engine 51

https://vimeo.com/channels/djmvp


discuss what they understood of each feature and how accurate these features were
represented. Users gave positive feedbacks toward our video feature visualizations.
They also made suggestions to improve the tool.

First, the system should accept frame or intervals (regions) or any length. So far, the
tool presented in this paper finds the highest hue value for the whole shot and extracts
the saturation and brightness values for this specific color.

Second, it is useful to normalize the vertical axis of saturation and brightness bar
chart to make three visualizations of HSV consistent. Third, we should change the
color of the arrow in the motion direction figure so that it matches the color in the
motion intensity figure. Both suggestions help users to read multiple views. In addition,
these perceptual cues make the relationship among views more clearly to the user.

Fourth, the interface should represent hue, saturation, and brightness divided into
more than 24 parts to make the visualization more precise. This suggestion might
increase cognitive attention demanded to perceive the information. Ideally, the infor-
mation extracted should provide users a stable context of analysis without adding
complexity. Thus, providing more detailed information might be an option provided by
the system, while the default could remain as 24.

In addition, to obtain a clear understanding of each feature and the visualization
tool, users recommend us to give a detailed explanation of each feature in the interface.
These explanations would be useful when learning about the interface. All these
feedbacks will be considered in further development of the tool.

Acknowledgement. We would like to acknowledge the Social Sciences and Humanities
Research Council of Canada and Ministry of Education CAPES Brazil for their ongoing financial
support. And we would like to thank the reviewers, who through their thoughtful comments have
been assisting with this publication.

References

1. Galanter, P.: What is generative art? Complexity theory as a context for art theory. Digit.
Creat. (2009)

2. Bizzocchi, J.: Ambient Video (2012). https://ambientvideo.org/seasons/
3. Eisenstein, S.: Film Form: Essays in Film Theory. Harcourt Brace and Company, New York

(1949)
4. Walid, M.: Eisenstein and Montage: Battleship Potemkin, essay. https://www.academia.edu/

7875638/Eisenstein_and_Montage_Battleship_Potemkin
5. Bunge, M.: Philosophical inputs and outputs of technology. In: Doner, D. (ed.) The History

and Philosophy of Technology. University of Illinois, Champaign (1979)
6. Vaishnavi, V., Kuechler, W.: Design Research in Information Systems (2011). http://desrist.

org/design-research-in-informationsystems
7. Rashid, U., Viviani, M., Pasi, G.: A graph-based approach for visualizing and exploring a

multimedia search result space. Inf. Sci. 370–371(20), 303–322 (2016)
8. Chandrasegaran, S., Badam, S.K., Kisselburgh, L., Peppler, K., Elmqvist, N., Ramani, K.:

VizScribe: a visual analytics approach to understand designer behavior. Int. J. Hum.-
Comput. Stud. 100, 66–80 (2016)

52 J. Fan et al.

https://ambientvideo.org/seasons/
https://www.academia.edu/7875638/Eisenstein_and_Montage_Battleship_Potemkin
https://www.academia.edu/7875638/Eisenstein_and_Montage_Battleship_Potemkin
http://desrist.org/design-research-in-informationsystems
http://desrist.org/design-research-in-informationsystems


9. Mayor, O., Llimona, Q., Marchini, M., Papiotis, P., Maestre, E:. repoVizz: a framework for
remote storage, browsing, annotation, and exchange of multi-modal data. In: Proceedings of
the 21st ACM International Conference on Multimedia, MM 2013, October 2013

10. Liu, Y., Shi, Z.: Boosting video description generation by explicitly translating from frame-
level captions. In: Proceedings of the 2016 ACM on Multimedia Conference, MM 2016,
September 2016

11. Chen, T., Lu, A., Hu, S.: Visual storylines: semantic visualization of movie sequence.
Comput. Graph. 36(4), 241–249 (2012)

12. Bhattacharya, S., Gupta, S., Venkatesh, K.S.: Video shot detection & story board generation
using video decompositio. In: Proceedings of the Sixth International Conference on
Computer and Communication Technology, ICCCT 2015, September 2015

13. Tanase, C., Giangreco, I., Rossetto, L., Schuldt, H., Seddati, O., Dupont, S., Altiok, O.C.,
Sezgin, M.: Semantic sketch-based video retrieval with autocompletion. In: Companion
Publication of the 21st International Conference on Intelligent User Interfaces, IUI 2016
Companion, March 2016

14. Few, S.: Practical Rules for Using Color in Charts, Perceptual Edge Visual Business
Intelligence Newsletter February (2008)

15. Van Wijk, J.J.: Cluster and calendar based visualization of time series data. In: Proceedings
of INFOVIS 1999, pp. 4–9 (1999)

16. Vadivel, A., Sural, S., Majumdar, A.K.: Robust histogram generation from the HSV space
based on visual colour perception. Int. J. Sig. Imaging Syst. Eng. InderScience 1(3/4), 245–
254 (2008)

17. Fan, J., Li, W., Bizzocchi, J., Bizzocchi, J., Pasquier, P.: DJ-MVP: an automatic music video
producer. In: Proceedings of the Advances in Computer Entertainment Technology
Conference, ACE 2016, November 2016

ViVid: A Video Feature Visualization Engine 53


	ViVid: A Video Feature Visualization Engine
	Abstract
	1 Research Topic
	2 Film Editing
	2.1 Video Data

	3 Method
	3.1 Related Works

	4 Design Strategy
	4.1 Color Feature Visualization Interface
	4.2 Motion Feature Visualization Interface
	4.3 Texture Feature Visualization Interface

	5 Usage, Feasibility Study and Considerations
	Acknowledgement
	References


