
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/317357259

MASOM:	A	Musical	Agent	Architecture	based	on
Self-Organizing	Maps,	Affective	Computing,	and
Variable	Markov	Models

Conference	Paper	·	June	2017

CITATIONS

0

READS

37

2	authors:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

GrooveNet	View	project

Audio	Metaphor	(AuMe)	View	project

Kıvanç	Tatar
Simon	Fraser	University

5	PUBLICATIONS			1	CITATION			

SEE	PROFILE

Philippe	Pasquier

Simon	Fraser	University

157	PUBLICATIONS			913	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Kıvanç	Tatar	on	06	June	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/317357259_MASOM_A_Musical_Agent_Architecture_based_on_Self-Organizing_Maps_Affective_Computing_and_Variable_Markov_Models?enrichId=rgreq-e7da9308c3fe08454ccfe430219ce760-XXX&enrichSource=Y292ZXJQYWdlOzMxNzM1NzI1OTtBUzo1MDIxMjI1MzU1NTkxNzNAMTQ5NjcyNjc0OTU3Mw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/317357259_MASOM_A_Musical_Agent_Architecture_based_on_Self-Organizing_Maps_Affective_Computing_and_Variable_Markov_Models?enrichId=rgreq-e7da9308c3fe08454ccfe430219ce760-XXX&enrichSource=Y292ZXJQYWdlOzMxNzM1NzI1OTtBUzo1MDIxMjI1MzU1NTkxNzNAMTQ5NjcyNjc0OTU3Mw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/GrooveNet?enrichId=rgreq-e7da9308c3fe08454ccfe430219ce760-XXX&enrichSource=Y292ZXJQYWdlOzMxNzM1NzI1OTtBUzo1MDIxMjI1MzU1NTkxNzNAMTQ5NjcyNjc0OTU3Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Audio-Metaphor-AuMe?enrichId=rgreq-e7da9308c3fe08454ccfe430219ce760-XXX&enrichSource=Y292ZXJQYWdlOzMxNzM1NzI1OTtBUzo1MDIxMjI1MzU1NTkxNzNAMTQ5NjcyNjc0OTU3Mw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e7da9308c3fe08454ccfe430219ce760-XXX&enrichSource=Y292ZXJQYWdlOzMxNzM1NzI1OTtBUzo1MDIxMjI1MzU1NTkxNzNAMTQ5NjcyNjc0OTU3Mw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kivanc_Tatar?enrichId=rgreq-e7da9308c3fe08454ccfe430219ce760-XXX&enrichSource=Y292ZXJQYWdlOzMxNzM1NzI1OTtBUzo1MDIxMjI1MzU1NTkxNzNAMTQ5NjcyNjc0OTU3Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kivanc_Tatar?enrichId=rgreq-e7da9308c3fe08454ccfe430219ce760-XXX&enrichSource=Y292ZXJQYWdlOzMxNzM1NzI1OTtBUzo1MDIxMjI1MzU1NTkxNzNAMTQ5NjcyNjc0OTU3Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Simon_Fraser_University?enrichId=rgreq-e7da9308c3fe08454ccfe430219ce760-XXX&enrichSource=Y292ZXJQYWdlOzMxNzM1NzI1OTtBUzo1MDIxMjI1MzU1NTkxNzNAMTQ5NjcyNjc0OTU3Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kivanc_Tatar?enrichId=rgreq-e7da9308c3fe08454ccfe430219ce760-XXX&enrichSource=Y292ZXJQYWdlOzMxNzM1NzI1OTtBUzo1MDIxMjI1MzU1NTkxNzNAMTQ5NjcyNjc0OTU3Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Philippe_Pasquier?enrichId=rgreq-e7da9308c3fe08454ccfe430219ce760-XXX&enrichSource=Y292ZXJQYWdlOzMxNzM1NzI1OTtBUzo1MDIxMjI1MzU1NTkxNzNAMTQ5NjcyNjc0OTU3Mw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Philippe_Pasquier?enrichId=rgreq-e7da9308c3fe08454ccfe430219ce760-XXX&enrichSource=Y292ZXJQYWdlOzMxNzM1NzI1OTtBUzo1MDIxMjI1MzU1NTkxNzNAMTQ5NjcyNjc0OTU3Mw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Simon_Fraser_University?enrichId=rgreq-e7da9308c3fe08454ccfe430219ce760-XXX&enrichSource=Y292ZXJQYWdlOzMxNzM1NzI1OTtBUzo1MDIxMjI1MzU1NTkxNzNAMTQ5NjcyNjc0OTU3Mw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Philippe_Pasquier?enrichId=rgreq-e7da9308c3fe08454ccfe430219ce760-XXX&enrichSource=Y292ZXJQYWdlOzMxNzM1NzI1OTtBUzo1MDIxMjI1MzU1NTkxNzNAMTQ5NjcyNjc0OTU3Mw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Kivanc_Tatar?enrichId=rgreq-e7da9308c3fe08454ccfe430219ce760-XXX&enrichSource=Y292ZXJQYWdlOzMxNzM1NzI1OTtBUzo1MDIxMjI1MzU1NTkxNzNAMTQ5NjcyNjc0OTU3Mw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

MASOM: A Musical Agent Architecture based on Self-Organizing Maps,
Affective Computing, and Variable Markov Models

Kıvanç TATAR and Philippe PASQUIER
School of Interactive Arts + Technology, Simon Fraser University

Surrey, BC, CANADA
{ktatar, pasquier}@sfu.ca

Abstract

Musical Agent based on Self-Organizing Maps
(MASOM) is a machine improvisation software for live
performance. MASOM plays experimental music and
free improvisation. The agent perceives and generates
audio signals. MASOM combines Self-Organizing
Maps for sound memory, Variable Markov Models
for musical structure, and Affective Computing for
machine listening. The agent learns the sonic content
and the musical structure to generate live performances.
MASOM’s offline learning uses an audio corpus
of recordings of performances or compositions.
The machine listening module of MASOM extracts
high-level features such as eventfulness, pleasantness,
and timbre. The agent listens to itself and other
performers to decide what to play next.

Introduction
Metacreation is the idea of endowing machines with creative
behaviors (Pasquier et al. 2017). Metacreation applies the
knowledge of Artificial Intelligence to develop autonomous
systems solving creative tasks. Musical Metacreation
(MUME) is a sub-branch of Metacreation. MUME focuses
on the creative tasks of music. Autonomy and agency being
essential components of Metacreation and MUME, artificial
agents become the perfect modeling paradigm.

In this study, we present a new musical agent architecture.
An agent is a proactive system that autonomously
initiates actions to respond to its environment in timely
fashion (Wooldridge 2009). Agents work both online and
offline. While a variety of musical tasks have been addressed
by Multi-agent Systems (MAS), we focus on improvisation
in experimental electronic music in this study.

A musical agent is an autonomous system that creates
music or a part of the music, individually or in a community
of agents. MASOM is a flexible musical agent that only
requires a corpus of recordings for the learning and an
audio signal as an input to listen to other agents. MASOM
implements a hybrid agent architecture that combines
Self-Organizing Maps as a musical memory, Variable Order
Markov Models for pattern recognition and generation in

This work is licensed under the Creative Commons “Attribution
4.0 International” licence.

music, and Affective Computing and machine listening to
model human hearing.

MASOM’s architecture stands out with the following
contributions in musical agents:
• The use of SOMs as a musical memory of audio samples
• The capacity of a musical agent that can listen to big data

of music
• The introduction of sound affect estimation in offline and

online machine listening
• The flexibility of a musical agent to perform alone or with

other agents, software or human.
• Machine listening with the time scales of micro, sound

object, and meso
Roads (2004) proposes infinitesimal, subsample, sample,

micro, sound object, meso, macro, supra, and infinite time
scales of music, arranged from the one with the shortest
duration to the longest one. MASOM inherits three different
time scales of micro, sound object, and meso. Micro time
scale spans from a millisecond to approximately 100ms. The
duration of sound objects varies from a fraction of a second
to several seconds. Meso time scale ranges from seconds to
minutes. We explain how these time scales are incorporated
in MASOM’s architecture in the Section System Design.

Background
Self-Organizing Maps
Self-Organizing Maps (SOMs) are artificial neural network
models, inspired by neurophysiology (Kohonen 1998).
SOMs visualize, represent, and cluster high-dimensional
input data with a simpler 2D topology. SOM topologies are
typically square and include a finite number of nodes. Node
vectors have the same number of dimensions as the input
data. SOMs organize the input data using a 2D similarity
grid so that similar data clusters locate closer to each other
in the topology. Moreover, SOMs cluster the input data by
assigning each input vector to the closest node called the
best matching unit (BMU). Figure 1 shows a SOM with
100 nodes. Each square represents one node that is colored
according to its feature value.

The training is unsupervised in SOMs, but designers set
the topology and the number of nodes in the topology.
Each input vector is a training instance of SOM’s learning.

1

mailto:ktatar@sfu.ca
mailto:pasquier@sfu.ca

Figure 1: The generation interface of MASOM includes
a visualization of SOM. The visualization shows one
dimension at a time. The dimensions are normalized
between -1.0 (black) and 1.0 (white) for the visualization.

There are three ways to initialize SOM nodes: starting
with zero vectors, randomizing model vectors, and using
principal component analysis on the input vectors. During
a training instance, a SOM also updates BMU’s neighboring
model vectors using a neighborhood function. Common
neighborhood functions are Gaussian, cut-Gaussian curves,
linear, and piecewise linear functions.

On each training instance, SOMs update their nodes
using the data of an input vector. First, SOMs find the
BMU of an input vector. Second, SOMs calculate the
Euclidean distance between the input vector and the BMU.
Third, SOMs update the BMU by this distance multiplied
by the learning rate. The learning rate is a user-set
global parameter in the range [0., 1.]. Lower learning rate
corresponds to less adaptive and more history-depended
SOMs. Depending on the neighboring function, SOM also
updates the neighbors of BMU in the direction of BMU’s
update. The update amount becomes less as the neighboring
node is further away from the BMU. Therefore, the BMU
and its neighboring nodes move closer to input vectors on
each training instance.

It is common to use the same dataset more than once to
train a SOM. Each pass on the dataset is called an epoch. The
learning rate is adaptive, decreasing as the number of epoch
increases. Hence, model vectors change less as the number
of epochs increases (Kohonen 1998). The training of SOM
stops after some epochs, or when the nodes are updated less
than a user-set amount, or not updated at all.

Markov Models
Markov Models are finite state machines that model patterns
in discrete sequences through the Markov assumption. An
N th order Markov model assumes that,

P (st|st−1, st−2, ..., s1) = P (st|st−1, ..., smax(t−N,1)) (1)

Hence, Markov models are history dependent. A first order
Markov model depends on the current state to predict the
next. A second order Markov model takes the current and the
previous state into account to predict the next state. That is,
the order of a Markov model points out how many previous
states to be considered to predict and generate the next

state. Moreover, the observed number of transitions between
Markov states determines the conditional probabilities of the
transitions. Therefore, a Markov Model is a stochastic model
represented as a directional graph.

Variable Markov models (VMMs) refer to a family
of algorithms including probabilistic finite automata,
probabilistic suffix automata, prediction suffix trees,
Lempel-Ziv 78, improved Lempel-Ziv (LZ-MS), prediction
by partial match (PPM), Factor Oracles, and the context
tree weighting method (Ron, Singer, and Tishby 1996;
Begleiter, El-Yaniv, and Yona 2004). VMM considers a
varying number of previous states to predict the next state.
Markov Models are applied to a variety of MUME tasks
including the musical agent design (see Section Musical
Agents with Markov Models).

Affective Computing

Eerola and Vuoskoski (2013) mention that “...the emotional
effects of music are the most important reason why
people engage in musical activities.” and categorize
affect models in the literature in four classes: discrete,
dimensional, miscellaneous and music-specific. First, the
discrete affect models assume that one can explain all
emotions using a finite set of basic emotions such
as happiness, sadness, fear, anger, and disgust (Ekman
1992; Panksepp 1998) as well as shame, embarrassment,
contempt and guilt (Ortony and Turner 1990). Second, the
dimensional affect models represent emotions using two
or more continuous dimensions that are ideally orthogonal
to each other. The most common dimensional affect
model has two dimensions: valence (pleasantness) and
arousal (eventfulness). Some dimensional affect models
include additional dimensions such as tension, potency,
dominance (Eerola and Vuoskoski 2011). The continuous
circumplex model is an example of a dimensional affect
model (Russell 1980). Music Information Retrieval (MIR)
studies frequently use the dimensional affect model (Eerola
and Vuoskoski 2013). Third, miscellaneous models are
collections of concepts that are linked to emotions
such as intensity, preference, similarity, tension. Fourth,
music-specific affect models are proposed as emotion lists
that are specifically relevant to music (Zentner, Grandjean,
and Scherer 2008). The discussions around a list of
music-specific emotions are still ongoing (Eerola and
Vuoskoski 2013).

The cognition of affect has different layers. Livingstone
et al. (2007) model three different layers in the cognition
of emotion in sound and music: perceived, induced and
expressed emotion. The perceived emotion is the subjective
perception of stimuli. The perceived emotion goes through
a cognitive process and becomes the reaction that is the
induced emotion. The expressed emotion is the conveyed
emotion that is stimulated by subjects (humans). In this
study, the affect estimation in sound focuses on the perceived
emotion. We explain our multivariate regression algorithm
for affective computing in sound in the Section Sound Affect
Estimation.

2

Related Work
In this section, we explain why we choose SOMs to model
musical memory and mention a musical agent that use a
SOM in the system design. Then, we briefly cover musical
agents with Variable Markov Models.

Modelling Musical Memory with SOMs
Gabora (2002) proposes three properties of the memory in
the cognitive processes of creativity:

• Memory is sparse

• Memory is distributed, but distributions are constrained

• Memory is content addressable

Bogart and Pasquier (2013) build on Gabora’s work to
model the memory of creative visual processes using SOMs.
Bogart and Pasquier propose that SOMs are beneficial to
model the connection between the sensory input and the
field experience of an agent. SOMs satisfy the three memory
properties of creative processes proposed by Gabora. If we
model the creative memory with SOM, the memory is sparse
since SOMs consist of separate node vectors arranged in
a 2D plane. The memory is distributed but distributions
are constrained because SOMs have a finite number of
nodes that are constrained by the domain represented by
the sensory input. Memory is also content addressable in
SOMs. SOM nodes represent the clusters the sensory input
instances. Moreover, the node vectors are not the exact
replications of sensory input vectors although SOM nodes
are aligned by the sensory input.

Regarding the applications of SOMs as the memory of a
musical agent, we have found only one implementation in
the literature. Smith and Deal (2014) use SOMs in the short
term memory of a musical agent. This musical agent works
with audio inputs and extracts audio features of chroma,
brightness, noisiness, and loudness. There are two layers
in the memory: long-term memory and adaptive memory.
The long-term memory is a k-d tree trained on audio feature
vectors at the end of each performance sessions. Also, each
input audio feature vector is a search query of the k-d tree
during the performance. The agent trains and updates the
SOM online using chroma vectors of the input. The amount
of change in SOM node vectors in a control signal that is
passed to the decision module. The decision module uses
this distance to deviate from the input feature vector to
introduce variance in the agent’s output.

SOMs have also been used to organize large collections
of audio samples (Eigenfeldt and Pasquier 2010; Fried, Jin,
and Oda 2014). Hence, we decided to focus on SOMs as the
sound object memory of MASOM.

Musical Agents with Markov Models
Markov Models have been extensively used in musical agent
design because of their success on the prediction (Begleiter,
El-Yaniv, and Yona 2004) and generation (Pachet 2003) of
symbolic music sequences.

The Continuator is a musical agent working
with a symbolic representation of music (Pachet
2003). The Continuator uses VMM to continue

a musical phrase. Another musical agent with
VMM is Beatback (Hawryshkewich, Pasquier, and
Eigenfeldt 2010). Beatback uses VMM to generate
rhythms. Moreover, Factor Oracle, an algorithm that
is similar to VMM, has been extensively applied
to musical agents design, including OMAX, Audio
Oracle, PyOracle, Improtek, and Variable Markov
Oracles (VMO) systems (Assayag and Dubnov 2004;
Assayag et al. 2006; Dubnov, Assayag, and Cont 2007;
Lévy, Bloch, and Assayag 2012; Nika and Chemillier 2012;
Surges and Dubnov 2013; Wang and Dubnov 2014;
Nika et al. 2015; Wang, Hsu, and Dubnov 2017). Amongst
all these musical agents, VMO is the closest architecture
to MASOM. Similar to MASOM, VMO can perform live
with or without other human or software agents. VMO
differs from previous FO implementations. In the previous
FO implementations, each state represents a musical phrase
segment that is symbolic. However, each state in VMO is
a cluster of audio frames. VMO uses a distance threshold
to cluster audio frames. If the distance between feature
vectors of two audio frames is less than the threshold,
these frames are added to the same cluster. The agent sets
the distance threshold automatically by calculating the
threshold value that gives the highest information rate (IR).
IR is extensively used in Pattern Matching and Recognition
studies as a measure of information content.

System Design
This section begins with the explanation of the affect
estimation algorithm and machine listening in MASOM.
We continue by presenting the learning and generation in
MASOM.

Sound Affect Estimation
Affect estimation in sound and music is still an open
problem (Eerola and Vuoskoski 2013). Fan, Thorogood,
and Pasquier (2016) present a machine learning model
that estimates pleasantness and eventfulness of soundspace
recordings. The authors implement a 2D continuous affect
model proposed by Russell (1980). Using multivariate linear
regression, their model is trained on a data set of 125
soundscape samples with 6-second duration. The data set is
labeled by an online study with 20 participants. In this study,
we use the same dataset that the study of Fan, Thorogood,
and Pasquier (2016) uses. We used a different audio feature
extraction library and we applied multivariate regression
to generate an affect estimation model. We implement
feature extraction in MAX1 using ircamdescriptor˜ object
provided in MAX Sound Box externals2. MAX provides
opportunities to use the affect estimation system for both
offline affect estimation of an audio corpus and realtime
affect estimation in machine listening applications. Next,
we explain each audio feature used in the affect estimation
model and introduce the model.

All audio features are computed with a window size of
1024 samples (23ms) and a hop size of 512 samples (12ms),

1https://cycling74.com/
2http://forumnet.ircam.fr/shop/en/

forumnet/53-max-sound-box.html.

3

https://cycling74.com/
http://forumnet.ircam.fr/shop/en/forumnet/53-max-sound-box.html
http://forumnet.ircam.fr/shop/en/forumnet/53-max-sound-box.html

which correspond to the micro time scale. We calculate
the mean and standard deviation of these audio features
over a moving window of 6-seconds (Fan, Thorogood, and
Pasquier 2016) which corresponds to the sound object time
scale. There are five audio features included in the affect
estimation model:
• Mel Frequency Cepstral Coefficient (MFCC) is a

known feature in audio processing (Peeters 2004).
MFFC calculation combines Mel frequency scale with
a particular frequency spectrum calculation called
cepstrum. Mel frequency scale represents the critical
bands of human hearing. The cepstrum stands for the
discrete cosine transform (DCT) of the logarithm of the
spectrum (FFT). There are 13 MFCCs in our calculation
excluding the zero coefficient. MFCC0, the energy, or
the DC offset is removed.

• The second feature that we use in the affect estimation
is loudness. We use the algorithm proposed by Moore,
Glasberg, and Baer (1997) to calculate the loudness.

• Spectral Flatness is the ratio of geometric mean to
the arithmetic mean of the energy spectrum. Spectral
flatness shows the noisiness against sinusoidality of the
spectrum. We compute the spectral flatness in four bands:
250 - 500, 500 - 1000, 1000 - 2000, 2000 - 4000 Hz.
SpectralF latness1Mean in equation 2a refers to the
moving average of the spectral flatness computer over the
band 250 - 500 Hz.

• Perceptual Spectral Decrease is the amount of decreasing
of the spectral amplitude, computed using a human
hearing model (Peeters 2004).

• Tristimulus is the calculation of three different types of
energy ratio (Peeters 2004). Perceptual Tristimulus uses a
human hearing model to calculate tristimulus.

Equation 2a and 2b introduce our affect estimation model
generated by the multivariate linear regression:

V alence = − 0.169+ (2a)

− 0.061 ∗ LoudnessMean

+ 0.588 ∗ SpectralF latness1Mean

+ 0.302 ∗ MFCC1STD

+ 0.361 ∗ MFCC5STD

− 0.229 ∗ PerceptualSpectralDecreaseSTD

Arousal = − 1.551 (2b)

+ 0.060 ∗ LoudnessMean

+ 0.087 ∗ LoudnessSTD

+ 1.905 ∗ PerceptualTristimulus2STD

+ 0.698 ∗ PerceptualTristimulus3Mean

+ 0.560 ∗ MFCC3STD

− 0.421 ∗ MFCC5STD

+ 1.164 ∗ MFCC11STD

We use the affect estimation model given in Equation 2a
and 2b within two sub-modules: offline labeling of
automatic corpus generation in the learning module and
online machine listening in the generation module. For
example, Figure 2 exemplifies the affective labels of an
audio corpus. We labeled each audio segment using the
equation 2a and 2b. We explain the details of the audio
segmentation in the following section.

Figure 2: Each dot represents a novel segment of
Stockhausen’s Kontakte. Each segment is labeled using the
dimensional affect estimation model of MASOM.

The Learning in MASOM
Automatic Corpus Generation MASOM automatically
generates its memory using an audio corpus. There are
two steps of creating the audio samples in the memory:
segmentation and labeling (Figure 3).

We segment an audio file using the MIRToolbox3 library
in MATLAB. MASOM applies a new segmentation
algorithm based on novelty, called Multi-granular
approach (Lartillot et al. 2013). The MIRToolbox includes
this new segmentation algorithm. This approach calculates
a novelty curve using the similarity matrix that displays
the musical structures in an audio file. The generation of
the similarity matrix has two steps. First, the algorithm
generates a dissimilarity matrix by calculating the distances
between an audio frame and all previous frames. The choice
of the type of distance measure relies on the audio feature
in focus. Cosine and Euclidean are common distance
measures in the similarity matrix calculations. Second, the
algorithm converts a dissimilarity to a similarity matrix
using one of two equations: linear, y = 1−x or exponential,
y = exp(−x). To generate the similarity matrix, MASOM
uses Fast Fourier Transform (FFT) with 50ms windows
with no overlapping to calculate the spectrum. Then,
MASOM calculates cosine distances between a frame and
its preceding frames to generate the dissimilarity matrix.
Lastly, the agent uses the linear conversion to convert the
dissimilarity matrix to the similarity matrix.

Using the similarity matrix, the segmentation algorithm
calculates of a novelty curve. A novelty curve is the
probability of transitions between successive sound objects.
The local maxima in novelty curves indicate a high
probability of transitions, and therefore, segmentation
points. The segmentation procedure ends by saving each
segment as a different file to generate an audio corpus of

3https://www.jyu.fi/hum/laitokset/
musiikki/en/research/coe/materials/
mirtoolbox

4

https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox

Automatic Corpus Generation

Multi-granular
Segmentation

by novelty

Audio Feature Extraction
MFCCs, loudness,
eventfulness, and

pleasantness labels

Corpus:
segments
and labels

Cluster Generation

SOM Training
using the label vectors of
segments in the corpus

The list of
SOM node

vectors

Self-Organized
Map Training Clustering by

labelling each element
in the corpus with the

closest SOM node
vector

The lists of
segments
per SOM

node
Variable-Order Markov Model

Corpus of Recordings

VOMM
Training

Generating the sequence
of SOM node numbers

Learning

Statistics
of features

Machine Listening

VMM
generation

mode

Audio
input

Audio Feature Extraction
MFCCs, loudness,
eventfulness, and

pleasantness labels

SOM
node to be

played next

Random selection of
an audio segment

using the cluster of
the SOM node

Statistics of feature
vectors calculated

during the last audio
segment playback

Duration

BMU
The closest
SOM node

Action

Generation

VOMM
model

Segment playbackAudio Output

Environment
Audio output of all agents

Figure 3: The architecture of MASOM

MASOM’s musical memory. Figure 4 shows an example of
MASOM’s segmentation. In our experiments with a variety
of corpus, we observe that this segmentation algorithm
successfully creates audio segments ranging from a fraction
of a second to several seconds, which corresponds to the
sound object time scale.

Following, we label each audio segment with a vector
with 31 dimensions. The average and standard deviation of
the audio features are computed over the whole segment.
Sixteen dimensions are the average of 2 affect estimation
features, 13 MFCCs, and loudness. Fourteen dimensions are
the standard deviations of 13 MFCCs and loudness. The
remaining dimension is the length of the audio segment in
seconds. These labels are later used as feature vectors to
train the SOM.

The Self-Organizing Map We use the ml.som MAX
object to implement the SOM. The object is publicly
available by Smith and Garnett (2012). Input vectors of the
SOM are 31-dimensional vectors of audio segments in the
corpus. The topology of the SOM is rectangular. The size of
the topology changes with the number of audio files in the
corpus. The SOM topology is a ∗ a, where

a = int(
√

the number of audio samples in the memory/6) (3)

Hence, the total number of SOM nodes is approximately
one-sixth of the total number of audio files. The total number
of epochs is 400 in the training of the SOM. The learning
rate is initially set to 0.25 and linearly decreases to 0.001
as the epoch step increases. The neighborhood function is
linear, that is, the amount of update is linearly decreasing as
the neighboring node is further away from the BMU. The
neighborhood radius is initially set to r = a/2 and linearly
decreases to r = 1 as the epoch step increases. We came
up with the Equation 3 and the parameters of SOMs after
several trials with corpora.

As a result of the SOM training, MASOM uses the
SOM to generate clusters in the corpus. MASOM labels
each audio segment with its BMU. Hence, each SOM node
represents a cluster of audio segments. Some nodes may end
up with no audio segments after clustering. In our trials,
we found the ratio of 6 in equation 3 by aiming for the
least number of SOM nodes without any audio segments.

We further discuss this in the Section Evaluation and Future
Work and mention our future work to develop MASOM’s
memory further.

The Variable-Order Markov Model MASOM trains a
VMM using a string of SOM nodes. First, MASOM labels
each audio segment with its BMU in the trained SOM.
Second, MASOM uses the original order of the audio
segments to create a string of SOM nodes. Then, MASOM
trains the VMM using this string.

For example, Figure 4 shows the waveform of the seventh
track of Bernard Parmegiani’s De Natura Sonorum album.
The track is a minute and forty-three seconds long. Although
this track is too short to train MASOM, we exemplify
MASOM’s training using such a short track. First, MASOM
creates novel segments of the track. Each block in Figure 4
represents one segment. MASOM found 32 novel segments
in this track. Second, MASOM labels each audio segment
with a 31-dimensional vector. Third, MASOM sets the
topology of the SOM as 3x3 using the equation 3. Fourth,
MASOM trains the SOM using the label vectors of audio
segments. Fifth, MASOM labels each audio segment with its
BMU. The BMUs of audio segments in this track is written
on each audio segment in Figure 4. Using the original order
of the audio segments, we create a string of SOM nodes. For
this track, the SOM node string is,

88577400162636885232112041411773 (4)

Lastly, MASOM uses this string to train VMM.
We implement VMM in MAX using the VMM java

external for MAX 4. This external is an implementation of
Prediction by Partial Match-Method C (PPM-C) algorithm.
PPM-C requires a pre-set maximum Markov order. In
MASOM’s architecture, the maximum Markov order is
10. This is because we designed VMM to work in meso
time scale of music. Our segmentation algorithm that
we explain in the Section Automatic Corpus Generation
generates segments ranging from a fraction of a second to
several seconds, which is sound object time scale. Hence,
a maximum of 10 segments would range from seconds to
minutes, which corresponds to the meso time scale.

4VMM java external for MAX is available at http://www.
am-process.org/main/?portfolio=vmm

5

 http://www.am-process.org/main/?portfolio=vmm
 http://www.am-process.org/main/?portfolio=vmm

Figure 4: The waveform is the seventh track of Bernard Parmegiani’s De Natura Sonorum album. Each square indicates a novel
segment. The corresponding SOM node of the segment is written inside the box.

Following, we explain the details of the PPM-C
algorithm. The performance of a compression algorithm is
tested by calculating the log-loss over a test sequence. Lower
log-loss over a test sequence implies better compression
rates (Begleiter, El-Yaniv, and Yona 2004). However, the
probability of an unobserved sequence is zero. Hence, the
log-loss of such sequence is infinite. This is known as the
zero frequency problem in pattern matching and recognition.
PPM-C handles zero frequency using the escape method.

The escape method is as follows. Given a training
sequence with length D, for each context s with length
k ≤ D, PPM partitions a total probability, Pk(escape|s)
between all symbols that does not appear after the context s.
PPM allocates the remaining probability, 1− Pk(escape|s)
between the symbols that appear after the context s.
The PPM variant is determined by how Pk(escape|s) is
calculated and how 1−Pk(escape|s) is distributed amongst
the symbols with non-zero counts (Begleiter, El-Yaniv, and
Yona 2004).

In particular, the escape mechanism of PPM-C is as
follows. Given a maximum VMM order n, context s, and
symbol σ,

P (σ|s) = fσ
L+M

(5a)

P (escape|s) = M

L+M
(5b)

where M is the number of unique symbols in the alphabet,
L is the sum of frequency counts of all symbols in s, and
fσ is the frequency count of a symbol σ . When the escape
mechanism happens, PPM-C decreases the order by 1 and
calculates the probabilities for the order n− 1.

We choose the PPM-C in MASOM’s implementation
because PPM-C and Decomposed Context Tree Weighting
(DE-CTW) are shown to outperform other compression
algorithms that are Binary-CTW, Lempel-Ziv 78 (LZ78),
improved LZ78 (LZ-MS), and Probabilistic Suffix Trees
on predicting MIDI sequences of well-known classical and
jazz pieces (Begleiter, El-Yaniv, and Yona 2004). We further
discuss this in the Section Evaluation and Future Work.

The Generation in MASOM
MASOM’s generation module includes two submodules:
online machine listening and musical action, as depicted in
Figure 3. The environment of the agent is the summation of
the audio output of all agents, software or human. MASOM

perceives the current musical state of the environment using
its musical memory and the online machine listening.

The machine listening module implements feature
extraction, affect estimation, and calculation of statistics.
The affect estimation algorithm in the generation module
is the online version of the algorithm that we explain in
the Section Sound Affect Estimation. MASOM calculates
the statistics of audio features within the duration of the
sample played by the musical action module. When the
action module triggers a new sample, the machine listening
module clears all statistics. The machine listening module
outputs a 31-dimensional vector to the action module.

The musical action module calculates the distances
between the vector provided by the machine listening
module and the SOM nodes of the agent to find the
BMU. This BMU represents the current musical state that
is perceived by MASOM. Then, the action module sends
the BMU to VMM. VMM keeps track of the history the
BMUs to create a context s. Using this context, VMM
predicts a SOM node to be played next. We clarify in
the Section The Self-Organizing Map that each SOM node
represents a cluster of audio segments. When the previous
sample playback finishes, MASOM uses the SOM node
predicted by VMM to decide on a cluster of audio segments.
Lastly, MASOM randomly chooses a sample within the
cluster node to generate the audio output.

Evaluation and Future Work
Examples of MASOM’s output are available online5. The
online content includes a MASOM trained on Parmegiani’s
De Natura Sonorum album. We also provide a recording in
which audio segments of this album are played randomly.
For now, we let our readers decide the success of MASOM
by comparing the random playback of audio segments
to MASOM’s output in self-listening mode. The online
content also includes documentation of MASOM’s public
performances with human performers and other MASOM
agents. Moreover, the first step of our future work is running
evaluation experiments.

As of May 2017, MASOM has performed in various
venues in Vancouver, Canada; and Ístanbul, Turkey. The
early performances of MASOM were free improvisation in
noise music, in a duo setting with the first author. For the first
public concert in October 2016, MASOM was trained on a
noise album of the first author. The first author commented
that MASOM was successful at copying the musical style

5http://metacreation.net/masom/

6

http://metacreation.net/masom/

of the album. The first author also found that playing in a
duo setting with the agent was more satisfying than playing
solo and the agent was successful at proposing new musical
ideas when the human performer ran out of improvisational
ideas. Moreover, the first author emphasized that a stereo
performance setting in which the agent was on one channel
whereas the human performer was on the other, improved
the clarification of the communication between the agent
and the human performer. After this public concert, some
audience members commented that they would like to see
a visualization of the agent. In our future work, we plan to
visualize MASOM.

For the second concert in December 2016, we pushed
MASOM’s capabilities with a concert with the NOW
Ensemble. The ensemble includes saxophone, trumpet,
piano, double bass, and drums. NOW Ensemble plays
experimental music, free improvisation, and structured
improvisation. MASOM was trained of a recording of
NOW Ensemble for this second concert. This performance
was a challenge because the agent listening was through
a microphone instead of a line signal. The acoustic
instruments were not amplified and the distance of the
instruments affected what the agent was listening. Such
setting requires the mixing of acoustic instruments so that
the agent listens to a balanced mix of all instruments. In
our future work, we plan to study automatic mixing for the
machine listening of musical agents.

The third performance of MASOM was again free
improvisation in noise music. This performance was in
İstanbul in December 2016. The performance had three
sections. The first section was a duo of the first author
and MASOM. The second section was a duo of two
different MASOM agents. The third section was a trio
of two MASOM agents and the first author. Some of the
audiences informally reported that they preferred the second
section without the human performer to the other sections.
This three-section piece was also performed in Vancouver,
Canada in March 2017.

The fifth performance of MASOM was again in
Vancouver in April 2017. The context of this performance
was structured improvisation in electro-acoustic music,
including MASOM, the first author, and the second author
as the performers. The performance had three different
sections in which different MASOM agents were playing.
The agents were separately trained on Bernard Parmegiani,
David Tudor, and Ryoji Ikeda. The studio session of the
rehearsal of this performance is available online. Comparing
two different takes with Ryoji Ikeda corpus, we recognize
that the agent played louder and noisier when the human
performers played louder and noisier overall.

The machine learning model that we use for affect
estimation in sound is trained on a corpus of soundscape
recordings (Fan, Thorogood, and Pasquier 2016). Although
our experiments with this affect estimation model are
convincing, we want to develop a new machine learning
model using a corpus of experimental electronic music
excerpts. We are in the process of designing an
empirical evaluation experiment in which participants rank
experimental electronic music excerpts on a continuous 2D

affective grid. Using such data, we aim to develop a new
model to estimate affect of sounds used in experimental
electronic music.

In this version of MASOM, the SOM is MASOM’s
symbolic memory. There is no hierarchy in SOM, and
the topology is static. There is an improved version
of SOM, called Growing Hierarchical Self-Organizing
Map (GHSOM) (Rauber, Merkl, and Dittenbach 2002).
GHSOM introduces hierarchy to SOMs. GHSOM topology
is dynamic, and the topology grows with new input data.
GHSOM also addresses the problem of SOM nodes with
no audio segments that we mention in the Section The
Self-Organizing Map. Although GHSOM does not fit
Gabora’s second creative memory property, we think that
musical agents can go beyond human capabilities. With
MASOM, we want to move towards the notion of musical
agents that listen to music more than a human could (Collins
2017). GHSOM can help to develop musical agents that can
be trained on big data of music.

There are many variants of VMM algorithms. Begleiter,
El-Yaniv, and Yona (2004) present a comparison of
the performance of VMM algorithms on text, molecular
biology, and music. The authors show that the performance
of a VMM algorithm is context-dependent. For example,
LZ-MS performs the best on protein classification whereas
LZ-MS and LZ78 perform the worst on predicting English
text and symbolic representation of music. Within our
knowledge, the comparison of the performance of VMM
algorithms on predicting patterns of high-level musical
states is still to be done. We plan to compare a set of VMM
algorithms in MASOM’s system design as a future work.

Acknowledgements
We would like to thank Frederic Bevilacqua from Institut de
Recherche et Coordination Acoustique/Musique (IRCAM)
for providing us the MAX Sound Box library. Also, we
thank Jianyu Fan for his help on the affect estimation
model generation. This research was funded by the Natural
Sciences and Engineering Research Council of Canada,
and Social Sciences and Humanities Research Council of
Canada.

References
[2004] Assayag, G., and Dubnov, S. 2004. Using Factor
Oracles for Machine Improvisation. Soft Computing
8(9):604–610.

[2006] Assayag, G.; Bloch, G.; Chemillier, M.; Cont, A.; and
Dubnov, S. 2006. Omax brothers: a dynamic topology of
agents for improvization learning. In Proceedings of the 1st
ACM workshop on Audio and music computing multimedia,
125–132. ACM.

[2004] Begleiter, R.; El-Yaniv, R.; and Yona, G. 2004. On
prediction using variable order Markov models. Journal of
Artificial Intelligence Research 22:385–421.

[2013] Bogart, B. D. R., and Pasquier, P. 2013. Context
machines: A series of situated and self-organizing artworks.
Leonardo 46(2):114–122.

7

[2017] Collins, N. 2017. Towards Machine Musicians
Who Have Listened to More Music Than Us: Audio
Database-Led Algorithmic Criticism for Automatic
Composition and Live Concert Systems. Computers in
Entertainment 14(3):1–14.

[2007] Dubnov, S.; Assayag, G.; and Cont, A. 2007. Audio
Oracle: A New Algorithm for Fast Learning of Audio
Structures. ICMA.

[2011] Eerola, T., and Vuoskoski, J. K. 2011. A comparison
of the discrete and dimensional models of emotion in music.
Psychology of Music 39(1):18–49.

[2013] Eerola, T., and Vuoskoski, J. K. 2013. A Review of
Music and Emotion Studies: Approaches, Emotion Models,
and Stimuli. Music Perception: An Interdisciplinary Journal
30(3):307–340.

[2010] Eigenfeldt, A., and Pasquier, P. 2010. Real-Time
Timbral Organisation: Selecting samples based upon
similarity. Organised Sound 15(02):159–166.

[1992] Ekman, P. 1992. An argument for basic emotions.
Cognition & Emotion 6(3):169–200.

[2016] Fan, J.; Thorogood, M.; and Pasquier, P. 2016.
Automatic Soundscape Affect Recognition Using A
Dimensional Approach. Journal of the Audio Engineering
Society 64(9):646–653.

[2014] Fried, O.; Jin, Z.; and Oda, R. 2014. AudioQuilt:
2d Arrangements of Audio Samples using Metric Learning
and Kernelized Sorting. In Proceedings of the International
Conference on New Interfaces for Musical Expression.
Goldsmiths University of London.

[2002] Gabora, L. 2002. Cognitive mechanisms underlying
the creative process. In Proceedings of the 4th conference
on Creativity & cognition, 126–133. ACM.

[2010] Hawryshkewich, A.; Pasquier, P.; and Eigenfeldt, A.
2010. Beatback: A Real-time Interactive Percussion System
for Rhythmic Practise and Exploration. Proceedings of
the tenth International Conference on New Interfaces for
Musical Expression 100–105.

[1998] Kohonen, T. 1998. The self-organizing map.
Neurocomputing 21(13):1–6.

[2013] Lartillot, O.; Cereghetti, D.; Eliard, K.; and
Grandjean, D. 2013. A simple, high-yield method for
assessing structural novelity. In Proceedings of the 3rd
International Conference on Music & Emotion (ICME3)).

[2012] Lévy, B.; Bloch, G.; and Assayag, G. 2012. OMaxist
dialectics. In New Interfaces for Musical Expression,
137–140.

[2007] Livingstone, S. R.; Mhlberger, R.; Brown, A. R.;
and Loch, A. 2007. Controlling musical emotionality: an
affective computational architecture for influencing musical
emotions. Digital Creativity 18(1):43–53.

[1997] Moore, B. C. J.; Glasberg, B. R.; and Baer, T. 1997.
A Model for the Prediction of Thresholds, Loudness, and
Partial Loudness. Journal of Audio Engineering Society
45(4):224–240.

[2012] Nika, J., and Chemillier, M. 2012. Improtek:
integrating harmonic controls into improvisation in the

filiation of OMax. In International Computer Music
Conference (ICMC), 180–187.

[2015] Nika, J.; Bouche, D.; Bresson, J.; Chemillier, M.; and
Assayag, G. 2015. Guided improvisation as dynamic calls
to an offline model. In Sound and Music Computing (SMC).

[1990] Ortony, A., and Turner, T. J. 1990. What’s basic about
basic emotions? Psychological review 97(3):315.

[2003] Pachet, F. 2003. The continuator: Musical interaction
with style. Journal of New Music Research 32(3):333–341.

[1998] Panksepp, J. 1998. Affective Neuroscience: The
Foundations of Human and Animal Emotions. Oxford
University Press.

[2017] Pasquier, P.; Eigenfeldt, A.; Bown, O.; and Dubnov,
S. 2017. An Introduction to Musical Metacreation.
Computers in Entertainment 14(2):1–14.

[2004] Peeters, G. 2004. A large set of audio features
for sound description (similarity and classification) in the
CUIDADO project. Technical report, IRCAM.

[2002] Rauber, A.; Merkl, D.; and Dittenbach, M. 2002.
The growing hierarchical self-organizing map: exploratory
analysis of high-dimensional data. IEEE Transactions on
Neural Networks 13(6):1331–1341.

[2004] Roads, C. 2004. Microsound. Cambridge, Mass.: The
MIT Press.

[1996] Ron, D.; Singer, Y.; and Tishby, N. 1996. The power
of amnesia: Learning probabilistic automata with variable
memory length. Machine learning 25(2-3):117–149.

[1980] Russell, J. A. 1980. A circumplex model of
affect. Journal of Personality and Social Psychology
39(6):1161–1178.

[2014] Smith, B. D., and Deal, W. S. 2014. ML.*
Machine Learning Library as a Musical Partner in the
Computer-Acoustic Composition Flight. In the Proceedings
of the Joint Conference ICMC14-SMC14, volume 2014.

[2012] Smith, B. D., and Garnett, G. E. 2012. Unsupervised
Play: Machine Learning Toolkit for Max. In the Proceedings
of International Conference on New Interfaces for Musical
Expression 2012.

[2013] Surges, G., and Dubnov, S. 2013. Feature
selection and composition using PyOracle. In Ninth
Artificial Intelligence and Interactive Digital Entertainment
Conference.

[2014] Wang, C.-i., and Dubnov, S. 2014. Guided
music synthesis with variable markov oracle. In The
3rd International Workshop on Musical Metacreation, 10th
Artificial Intelligence and Interactive Digital Entertainment
Conference.

[2017] Wang, C.-I.; Hsu, J.; and Dubnov, S. 2017. Machine
Improvisation with Variable Markov Oracle: Toward Guided
and Structured Improvisation. Computers in Entertainment
14(3):1–18.

[2009] Wooldridge, M. 2009. An Introduction to MultiAgent
Systems. John Wiley & Sons.

[2008] Zentner, M.; Grandjean, D.; and Scherer, K. R. 2008.
Emotions evoked by the sound of music: Characterization,
classification, and measurement. Emotion 8(4):494–521.

8

View publication statsView publication stats

https://www.researchgate.net/publication/317357259

	Introduction
	Background
	Self-Organizing Maps
	Markov Models
	Affective Computing

	Related Work
	Modelling Musical Memory with SOMs
	Musical Agents with Markov Models

	System Design
	Sound Affect Estimation
	The Learning in MASOM
	Automatic Corpus Generation
	The Self-Organizing Map
	The Variable-Order Markov Model

	The Generation in MASOM

	Evaluation and Future Work
	Acknowledgements

