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Soundscape affect recognition is essential for sound designers and soundscape composers.
Previous work demonstrated the effectiveness of predicting valence and arousal of soundscapes
in responses from one expert user. Based on this, we present a method for the automatic
soundscape affect recognition using ground truth data collected from an online survey. An
analysis of the corpus shows that participants have a high level of agreement on the valence
and arousal of soundscapes. We generate a gold standard by averaging users’ responses, and we
verify the corpus by training stepwise linear regression models and support vector regression
models. An analysis of the models shows our system obtains better results than the previous
study. Further, we test the correlation between valence and arousal based on the gold standard.
Last, we report an experiment of using arousal as a feature for predicting valence and vice
versa.

0 INTRODUCTION

This study is inspired by research in the fields of sound-
scape studies and perception. Soundscape researchers have
demonstrated the variety of approaches taken to investigate
how soundscapes affect people for the creation of immer-
sive experiences [1–4]. Our research tries to develop an
automatic soundscape affect recognition system that sound-
scape composers can use to create emotional soundscape
compositions to evoke a target mood. This system can offer
sound designers a more streamlined workflow for creating
suitable sound effects for films and can offer engineers a
way to design mood-enabled recommendation systems for
retrieval of soundscape recordings.

To build such a system, we conducted an online study to
collect ratings of valence and arousal from multiple partic-
ipants. Then, we explored whether soundscape recordings
evoke the same emotions in different listeners by analyzing
the agreement between user ratings. Next, we tested the ef-
fectiveness of a soundscape affect recognition system with
data from multiple users. After that, we present the cor-
relation between arousal and valence based upon the gold
standard. Finally, we report the results of using valence as
a feature for predicting arousal.

This paper is organized as follows. In Sec. 1 we discuss
the related works in the domain of audio affect recogni-
tion. Next, in Sec. 2 we describe the creation of soundscape
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corpus and a gold standard obtained from an auditory per-
ception experiment. Sec. 3 details the evaluation results. Fi-
nally, we present our conclusions and future work in Sec. 4.

1 RELATED WORKS

Both the discrete and dimensional models are widely
used in the affective computing field. Russell proposed the
dimensional model [9] [28] and describes an emotion us-
ing a continuous circumplex space of emotional attributes,
which include pleasantness and eventfulness. The discrete
model classifies an emotion into one of a finite number of
categories [13].

Music Researchers have used these models to study emo-
tional ratings of music. Eerola et al. [7] explored various re-
gression techniques to analyze musical features using both a
circumplex and discrete model for modeling music emotion
responses. Lu, Liu, and Zhang [8] studied mood detection
based on a valence-arousal circumplex model. Stockholm
and Pasquier [22] modified the labels of dimensions to
pleasure and energy. They then built a mood classification
system based on reinforcement learning techniques. Van’t
Klooster and Collins [24] presented an emotion driven live
perform system. It used a dimensional model for collecting
users’ responses for mood classification of piano music.

Likewise, soundscape researchers adopted a similar
methodological approach for eliciting and modeling emo-
tional responses to soundscapes. Berglund et al. [1] inves-
tigated how people perceived recordings of soundscapes
categorized as "technological," "natural" or "human." They
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describe a listener survey to ascertain the important emo-
tional attributes. One-hundred listeners were asked to eval-
uate 30-second recordings of 30 outdoor soundscapes
with the help of 116 perceptual-emotional attribute scales.
A principal component analysis selected two important
dimensions: pleasantness (50%) and eventfulness (16%).
They defined the metric space using the following axes:
pleasant-unpleasant, exciting-boring, eventful-uneventful,
and chaotic-tranquil. Their study found that “eventfulness
was perceived to increase with increases in overall sound
level, but this relationship was found to be weaker for pleas-
antness (Pearson’s r = 0.4 for eventfulness and –0.7 for
pleasantness).” They also indicate that soundscapes dom-
inated by human sounds were perceived as more eventful
than soundscapes without human sounds.

Davies et al. [21] designed a listener response form for
evaluating urban soundscapes based on subjective scales
of preference. The study showed that an accurate evalua-
tion of a soundscape could be obtained by listeners rating
along linear scales of unpleasant-pleasant, agitated-calm,
and gloomy-fun. Brocolini et al. [2] did a field survey
to study the relationship between sound pleasantness and
other subjective variables. Authors asked passers-by to rate
the pleasantness of the surrounding sounds, visual environ-
ment, air quality, and overall environment. They then asked
passers-by to evaluate soundscape characteristics, such as
quiet-noisy, stable-changing, lifeless-lively, and surprising-
familiar. Their study demonstrated that the acoustic scene
has a significant effect on one’s evaluation of pleasantness.
Therefore, it is possible to analyze the soundscape apart
from the landscape and visual aspect of the scene.

Our work is based on a previous study of the Impress
system [3], which was an automatic soundscape affect pre-
diction system designed for real-time environments. Thoro-
good and Pasquier [3] curated a corpus of audio files using
an automatic segmentation algorithm [10] [15] that keeps
audio regions with consistent soundscape characteristics.
The segmentation algorithm was designed based on per-
ceptual categories including background, foreground, and
background with foreground sound. They used a circum-
plex model for collecting continuous data to measure a
subject’s reaction to soundscapes. Then, they used multiple
linear regressions to model audio features and expert user
affective ratings to soundscape recordings. Each excerpt
is four seconds long. The model was trained with 250 data
points. Evaluation of the model showed a good fit of features
to responses of models of predicting valence (R2: 0.712) and
arousal (R2: 0.71). The details are given in Sec. 3.2.

Thorogood and Pasquier [3] built a soundscape affect
recognition model based on one user’s emotional responses.
We extend that research [3] by conducting an online survey
to collect ground truth data to build a soundscape affect
recognition model.

2 METHODS

2.1 Circumplex Model
A circumplex model suggests that emotions are dis-

tributed in two-dimensional spaces [8]. Arousal represents

Fig. 1. The online study interface: the x-axis represents valence
(pleasantness). The y-axis represents arousal (eventfulness). After
a user had formed an opinion, the user clicks the cursor on the
circumplex model [6].

the perceived activity of the stimulus. Valence refers to the
degree of pleasantness [9]. A circumplex ordering of affect
is made by a rotation of the axes of an affect grid [28].
Berglund et al. indicated that people classified soundscapes
on scales of pleasant-unpleasant and eventful-uneventful.
They state that their measurement model for soundscapes
is “compatible with Russell’s circumplex model of human
emotions” [1].

The only formal two-dimensional system for eliciting re-
sponses to soundscapes was presented by Thorogood and
Pasquier [3]. Their system, Impress, used the criteria “pleas-
ant” and “unpleasant” to report the perceived pleasantness
of a soundscape and used “eventful” and “uneventful” to
report the feeling of arousal. On the axes of the affect grid,
they applied the labels “exciting” for a pleasant and event-
ful sound, “quiet” for a pleasant and uneventful sound,
“chaotic” for an unpleasant and eventful sound, and “bor-
ing” for an unpleasant and uneventful sound.

In this study we used the valence and arousal affect
model. Valence in our case is the perceived pleasantness
of a soundscape, and arousal indicates the intensity of emo-
tion provoked by the soundscape. To easily provide explicit
affective ratings on our valence and arousal model, we used
the same circumplex model [3] with the axes separated by
45 degrees: pleasant-unpleasant, exciting-boring, eventful-
uneventful, and chaotic-quiet (Fig. 1). Without a diagonal
axis in the model, participants tend to rate the affect near
the x and the y-axes [3].

2.2 Collection Stage
2.2.1 Corpus

Schafer’s referential taxonomy was widely used for
the classification of soundscapes. According to Schafer,
“Sounds of the environment have referential meaning” [4].
He grouped soundscapes based on their context rather than
content or physical characteristics. Table 1 shows Schafer’s
soundscape taxonomy.

2 J. Audio Eng. Soc., Vol. 64, No. 09, 2016 September



PAPERS AUTOMATIC SOUNDSCAPE AFFECT RECOGNITION USING A DIMENSIONAL APPROACH

Table 1. Schafer’s soundscape taxonomy [6].

Categories Examples

Natural sounds Bird, chicken, rain, sea shore
Human sounds Laugh, whisper, shouts
Sounds and society Party, concert, store
Mechanical sounds Engine, cars
Quiet and silence Wild space, silent forest
Sounds as indicators Clock, doorbell

Three experts selected audio clips following six cate-
gories according to Schafer’s taxonomy. It is straightfor-
ward to decide which category a sound is from (e.g., “birds
in the forest” would be natural sound; “airplane engine”
belongs to mechanical sounds). We selected 31 clips of
natural sounds, 23 clips of mechanical sounds, 39 clips
of sound as indicators, 11 clips of quiet and silence, 16
clips of sounds and society, and no human sounds. We used
the Sound Ideas corpus [11] and World Soundscape Project
[12], which have consistently good audio recording quality.

Sound Ideas is “the world’s leading publisher of pro-
fessional sound effects, offering more than 272 distinct
royalty-free collections to broadcast, post production, and
multimedia facilities [11].” The World Soundscape Project
(WSP) was established by Murray Schafer at Simon Fraser
University in the late 1960s [4]. The project is to “find so-
lutions for an ecologically balanced soundscape where the
relationship between the human community and its sonic
environment is in harmony. [4]” Later on, Barry Truax and
the Metacreation Lab1 digitized the WSP.

The previous study used 4-second excerpts. However, af-
ter our preliminary testing we decided to extract 6-second
excerpts from each of the sounds we selected, which would
give participants more time to form an opinion of both
valence and arousal for a soundscape. Each clip is mono-
phonic. The sample rate is 44100 Hz. Regions were selected
based on a soundscape audio signal segmentation algorithm
using listeners’ perception of background and foreground
sound [10] [15].

2.2.2 Online Study
Twenty students who took a sound design class from Si-

mon Fraser University participated the online study. The
mean age of all the participants was 21.7 years. There were
12 males and 8 females. The study was done in a lab en-
vironment. Participants used lab computers, each of which
had the same monitor and same sound card. Participants
used circumaural headphones to listen to the audio clips.
We asked participants to adjust the volume to a comfortable
level instead of asking them to adjust the volume to the same
loudness. This could add robustness to our findings. We
gave a tutorial of the task. We omitted the affective ratings
of the first 5 clips to allow users to calibrate their answers
for practices. Thus, we had 120 audio clips summed over
all 6 categories. Participants rated them in random order.
The study was conducted online through a web browser.

1http://metacreation.net/

We used an HTML5 audio player object to play audio ex-
cerpts. There was no timer, so participants were allowed to
listen to an excerpt repeatedly. After a user had listened to
an audio clip and formed an opinion of affect, the user used
a mouse to click on the circumplex model (the interface is
shown in Fig. 1) to enter their response. In Fig. 1, the x-axis
represents the level of valence, and the y-axis represents the
level of arousal.

2.3 Data Analysis
2.3.1 Agreement between Participants

To build a gold standard model, we need to demonstrate
participants’ high level of agreement on the valence and
arousal of soundscapes. The intraclass correlation coeffi-
cient (ICC) was used to measure the reliability of measure-
ments of ratings in both valence and arousal. In our case,
both the valence index, with a 95% confidence interval of
0.866 to 0.915, and the arousal index, with a 95% confi-
dence interval of 0.903 to 0.943, suggest that participants
highly agree with each other regarding soundscape affect.
The higher index of arousal suggests that it is easier for
observers to agree on valence than arousal. We obtained
the gold standard by averaging responses provided by the
20 experimental participants.

2.3.2 Audio Features for Modeling Soundscape
We selected the audio features based on the previous

study [3]. Audio features were extracted using the YAAFE
[17] software package. We used the bag-of-frames (BOF)
approach proposed by Aucouturier et al. [20], which repre-
sents signals as the long-term statistical distribution of local
spectral features. We ended up with a 98-dimension feature
vector. We resampled the audio from 44100 Hz AIF format
to 22050 Hz and applied a 23 ms Hanning window of 512
samples. The mean and standard deviation of features is
calculated.

Total loudness is a feature that describes the psycho-
logical correlate of physical strength (i.e., the sensation of
intensity) [17]. It is the sum of the individual loudness from
all bands along the Bark scale [16].The distance between
the highest loudness value along the Bark scale and the
total loudness is called perceptual spread. The perceptual
sharpness is computed using the specific loudness of Bark
bands [17]. Energy is computed as the root mean square of
an audio frame [17].

Spectral flatness is computed by using the ratio between
the geometric and arithmetic means [17]. Spectral flux is
the flux of the spectrum between consecutive frames [17].
Spectral roll-off is the frequency below which 99% of the
energy is contained [17]. Spectral slope is computed by
linear regression of the spectral amplitude [17]. Spectral
variation is the normalized correlation of the spectrum be-
tween consecutive frames [17]. MFCCs are common fea-
tures in speech recognition systems that recognize people
by their voices [18]. They have also been used in timbre
recognition [19]. MFCCs are short-term spectral-based au-
dio features. Mel-frequency is based on the human auditory
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system, which does not have a linear perception of sound
and maps different frequencies to perceived pitches.

2.3.3 Stepwise Linear Regression Models
We decided to use the same machine-learning model

in [3], a bidirectional stepwise multiple linear regression
model. It combines the standard multiple linear regression
models with stepwise selection methods. It selects the most
effective predictors to predict both valence and arousal val-
ues.

The model will remove nonsignificant variables, which
also solves the problem of collinearity. Therefore, our
model identifies the major predictors that influence the de-
pendent variable. We did not set a threshold for the number
of features; we kept all variables that are significant.

2.3.4 Support Vector Regression
Support vector regression has been widely used in affec-

tive computing fields, including music emotion recognition
[25] and video affect recognition [26]. We used the support
vector regression (SVR) option in the Weka software [23],
which uses the sequential minimal optimization algorithm
in Smola [27] to train a support vector regression using
polynomial kernels. It guarantees that the optimal solution
will be found. Induced by the selected kernel, the model
maps the input data into a higher-dimensional feature space
using nonlinear mapping and builds a linear model in this
feature space to do prediction.

3 RESULTS AND EVALUATION

In this section we first present the results of stepwise lin-
ear regression models trained by gold standard data. Then
we describe the results of support vector regression models
trained by gold standard data. Next, we present results of in-
dividual models of each participant, which is trained based
on each participant’s data. Last, we present a correlation
test between valence and arousal data in a gold standard,
an experiment of using arousal as a feature for predicting
valence and vice versa.

3.1 Evaluation Approach
We use the coefficient of determination (R2) to evaluate

the performance of our models. R2 represents the amount of
variability explained by the regressors in the model. If the
R2 is close to 1, it means the regression model is well fitted.
We used 10-fold cross-validation partitioning our dataset
into ten subsets and iteratively performing the learning on
nine subsets and validating the model on the other subset.
We calculated the mean squared error (MSE) to evaluate
the prediction accuracy of the linear regressions.

3.2 Gold Standard Model
3.2.1 Stepwise Linear Regression Models

3.2.1.1 Stepwise Regression Model Based on Low-Level
Audio Features. After obtaining the gold standard data,
which is the average response of 20 participants, we used

Table 2. Results of predicting valence using the stepwise
regression model with low-level audio features [6].

Categories used R2

All six categories 0.567
Without sounds as indicators 0.715
Only sounds as indicators 0.402
Only natural sounds 0.989
Only mechanical sounds 0.860

it to train the stepwise regression model to build a gold
standard model.

First, we used 10-fold cross-validation to test our model
of using the six categories described in Sec. 2.2.1. Second,
we used 10-fold cross-validation to test our model without
the “sounds as indicators” category to study the influence
of semantic information on valence and arousal evoked by
soundscapes. Third, we tested our model by only using data
from “sounds as indicators,” “natural sounds,” and “me-
chanical sounds” individually. We did not test categories
of “sounds and society,” “quiet and silence,” and “human
sounds” separately because the collection of excerpts of
these three categories were less than 20 items.

Table 2 shows the results of predicting valence using the
stepwise regression model and gold standard data. When
we use all six categories, the R2 for predicting valence is
0.567. When we remove the category of “sounds as indica-
tors,” the results of predicting valence indicates the model
explained 71.5% of the variance (R2 = 0.715, F(7, 72) =
29.35, p < 0.001). It is significantly higher than using data
including all six categories. As Orians et al. described in
[30], “Indicators serve as clues that something more funda-
mental or complicated is happening than what is measured
by them.” We assume the category of “sounds as indica-
tors” carries strong semantic information, which plays an
important role in evoking valence to listeners. The low R2

(0.402) from only using data from “sounds as indicators”
supports this assumption. Our model performs very well in
predicting valence when only using “mechanical sounds”
or “natural sounds.”

For the model trained with data points of all six cate-
gories, significant predictors include the mean of loudness,
standard deviation of perceptual sharpness, standard devia-
tion of MFCC5, mean of MFCC18, mean of MFCC32, and
mean of MFCC23. The equation for predicting valence is
given.

V alence = 0.231 + (−0.433) × LoudMean

+ (−0.937) × P SHStd

+ 0.808 × M FCC5Std

+ 0.626 × M FCC18Mean

+ (−2.046) × M FCC32Mean

+ 0.732 × M FCC23Mean (1)

Table 3 gives the standardized coefficients of each fea-
ture, which shows the relative contribution. We can see
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Table 3. Standardized coefficients for predicting valence.

Predictors Standardized coefficients

Mean of loudness −0.658
StdDev of perceptual sharpness −0.325
StdDev of MFCC5 0.268
Mean of MFCC18 0.262
Mean of MFCC32 −0.227
Mean of MFCC23 0.171

Table 4. Results of predicting arousal using the stepwise
regression model with low-level audio features [6].

Categories used R2

All six categories 0.816
Without sounds as indicators 0.876
Only sounds as indicators 0.737
Only natural sounds 0.800
Only mechanical sounds 0.983

Table 5. Standardized coefficients for predicting arousal.

Predictors Standardized coefficients

Mean of loudness 0.444
StdDev of loudness 0.384
Mean of spectral roll-off 0.374
StdDev of MFCC26 0.201
StdDev of MFCC5 0.197
Mean of MFCC2 −0.115
Mean of MFCC28 −0.114

that mean of loudness gives a high negative contribution to
perceived valence.

Table 4 shows the R2 of predicting arousal using all
six categories is 0.816. When we remove the category of
“sounds as indicators,” the results of predicting valence
indicates the model explained 87.6% of the variance (R2 =
0.876, F (12, 67) = 47.634, p < 0.001). Similar to predicting
valence, the R2 significantly decreases when we only tested
“sounds as indicators.” The R2 decreases to 0.737.

For the model trained with data points of all six cate-
gories, significant predictors include the mean of loudness,
standard deviation of loudness, mean of spectral roll-off,
mean of MFCC2, mean of MFCC28, standard deviation of
MFCC5, and standard deviation of MFCC26. The equation
for predicting arousal is given.

Arousal = −1.441 + 0.317 × LoudMean

+ 0.556 × LoudStd

+ 4.064 × E−5 × SrollMean

+ (4.296) × M FCC26Std

+ 0.64 × M FCC5Std

+ −0.038 × M FCC2Mean

+ −0.604 × M FCC28Mean (2)

Table 5 gives the standardized coefficients of each fea-
ture, which shows the relative contribution. We can see that
mean of loudness, mean of spectral roll-off, and the standard

Table 6. Results of predicting valence using the support vector
regression model with low-level audio features.

Categories used R2

All six categories 0.542
Without sounds as indicators 0.711
Only sounds as indicators 0.384
Only natural sounds 0.861
Only mechanical sounds 0.753

Table 7. Results of predicting arousal using the support vector
regression model with low-level audio features.

Categories used R2

All six categories 0.735
Without sounds as indicators 0.817
Only sounds as indicators 0.703
Only natural sounds 0.892
Only mechanical sounds 0.943

deviation of loudness gives the major positive contribution
to perceive arousal.

The result of predicting arousal (R2 = 0.816) is better
than the one for predicting valence (R2 = 0.567). We assume
that pleasantness of soundscapes is less differentiable than
the eventfulness. The results for the ICC also showed that
it is easier for observers to agree on valence than arousal.

The category of “sounds as indicators” carries strong
semantic information, which has influence on the affect
recognition task. Tables 2 and 4 show that this influence is
not reflected by arousal as much as valence. We assume it
is because there is a stronger relationship between semantic
information and pleasantness of soundscape than the one
between semantic information and eventfulness of sound-
scapes. Our gold standard model performs better than the
expert user’s results in [3]. The application is online.2

3.2.2 Support Vector Regressions
3.2.2.1 Support Vector Regression Models Based on

Low-Level Audio Features. We built a gold standard
model by training the support vector regression model with
the gold standard data, which is the average response of
20 participants. The test is the same as the one described
in Sec. 3.2.1.1. The results of predicting valence using the
support vector regression model are shown in Table 6. The
results are better than the previous study with Impress [3].
However, the results from using SVR are not as good as
those obtained using stepwise linear regression.

The results of predicting arousal using the support vector
regression model are shown in Table 7. The results are better
than those obtained in the previous study [3]; however, they
are not as good as those obtained using stepwise linear
regression.

In general, the results of predicting valence and arousal
using the support vector regression model are not as good
as those obtained using stepwise linear regression. We think

2http://audiometaphor.ca/impress/index.html

J. Audio Eng. Soc., Vol. 64, No. 09, 2016 September 5



FAN ET AL. PAPERS

Fig. 2. R2 of individual participants’ models for predicting va-
lence. The error bars represent the standard deviation [6].

it is because the polynomial kernel function creates many
higher level features based on low-level audio features we
provided. Because our dataset is not huge, the combination
of created features and existing features would cause the
overfitting problem. This problem is avoided in the stepwise
regression models by making feature selection and using
10-fold cross-validation.

3.3 Performance of the Stepwise Regression
Models of Individual Participants

In the previous section, we demonstrated that the perfor-
mance of stepwise regression was better than the perfor-
mance of SVR. Therefore, in this section, we present the
performance of the stepwise regression models of individ-
ual participants. Sec. 3.2.1.1 shows the improvement when
not including “sounds as indicators.” Because the model
performed better without “sounds as indicators” (as a result
of the semantic information this category contained) we
removed this category. Fig. 2 shows the R2 of all 20 partic-
ipants’ models that predict the valence of soundscapes. It
also includes the R2 of the expert user’s model in [3] and
our gold standard model.

Fig. 3 shows the R2 of all 20 participants’ models that
predict the arousal of soundscapes. It also includes the R2 of
the expert user’s model in [3] and our gold standard model.

The individual models produce an average MSE of 0.182
for valence and 0.129 for arousal. As it is shown in Figs.
2 and 3, our gold standard model described in Sec. 3.2
performs better than the results of the previous Impress
system [3] (valence: R2: 0.712, arousal: R2: 0.71), which is
also better than the performance of the current model of the
individual participants.

3.4 Correlation between Valence and Arousal
Researchers have studied the relationship between va-

lence and arousal [21] [29]. However, to our knowledge no
empirical research exists addressing the question of how
valence and arousal of soundscapes correlate to each other.
Tsai et al. found that there is a preference for high arousal

Fig. 3. R2 of individual participants’ models for predicting
arousal. The error bars represent the standard deviation [6].

Table 8. Results of predicting valence using the stepwise
regression model with low-level audio features and arousal

Just include low-level Include arousal
audio features as a new feature

R2 0.563 0.570

Table 9. Results of predicting arousal using the stepwise
regression model with low-level audio features and valence.

Just include low-level Include valence as
audio features a new feature

R2 0.816 0.817

positive affect in western cultures and lower arousal pos-
itive affect in eastern cultures [29]. They suggested that
valence varied inversely with arousal in Asian culture. In
our study, 9 participants came from Asia and 11 participants
came from North America. We ran a Pearson correlation
test on the average value over the 20 participants’ responses
of valence and arousal. There are 120 data points. Each data
point represents a value of valence and a value of arousal
ranging from –1 to 1. Our Pearson correlation coefficient
is –0.453 (p < 0.01), which indicates there is a moderate
negative correlation between the two dimensions. This in-
dicates that sounds that were rated as having higher arousal
were rated as having lower valence. Considering the in-
dication given by Tsai et al. in the scenario of soundscape
affect we assume human listeners think a quiet and peaceful
soundscape is more pleasurable.

Previous studies have also considered valence as a func-
tion of arousal. For example, Berlyne indicated that the
pleasantness stimuli is maximized at an intermediate level
of arousal [14]. We tested the effectiveness of including
arousal as a new feature to predict valence and vice versa.
We used data including all six categories to train stepwise
regression models. The performance of the models is shown
in Tables 8 and 9 (p < 0.001). The results indicate that when
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using either valence or arousal as a new high-level feature,
the performance of the model would be improved.

4 CONCLUSIONS AND FUTURE WORK

We conducted an online study to obtain ratings from par-
ticipants. Our analysis shows participants have a high level
of agreement on the valence and arousal of soundscapes.
Then, we found the performance of the stepwise linear re-
gression was better than the performance of the support
vector regression. Next, we built a gold standard model us-
ing stepwise linear regressions and gold standard data. Our
model performed better than the expert user model and any
of the individual study participants. Moreover, we tested the
correlation between responses of valence and arousal using
gold standard data and found a moderate negative correla-
tion between theses two dimensions. Finally, we reported
the results of using arousal as a feature to predict valence,
and vice versa.

For the next stage, we plan to study the ability of this
model to predict the responses of people with different
cultural backgrounds. We will use deep learning methods
to do soundscape affect recognition.
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