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ABSTRACT 

Emotion recognition is an open problem in Affective 
Computing the field. Music emotion recognition (MER) 
has challenges including variability of musical content 
across genres, the cultural background of listeners, relia-
bility of ground truth data, and the modeling human hear-
ing in computational domains. In this study, we focus on 
experimental music emotion recognition. First, we 
present a music corpus that contains 100 experimental 
music clips and 40 music clips from 8 musical genres. 
The dataset (the music clips and annotations) is publicly 
available at: http://metacreation.net/project/emusic/. Then, 
we present a crowdsourcing method that we use to collect 
ground truth via ranking the valence and arousal of music 
clips. Next, we propose a smoothed RankSVM (SRSVM) 
method. The evaluation has shown that the SRSVM out-
performs four other ranking algorithms. Finally, we ana-
lyze the distribution of perceived emotion of experi-
mental music against other genres to demonstrate the dif-
ference between genres.  

1. INTRODUCTION 

The research in MER proposes computational approaches 
to recognize the emotion of music. The increasing num-
bers of MER studies in recent years have been focusing 
on particular musical genres, such as classical music, pop, 
rock, jazz, and blues [41]. So far, to our knowledge, MER 
in experimental music has yet to be explored.  

The definition and use of the term experimental music 
have been an ongoing discussion within the last century.   
John Cage [15] clarifies the action of experimentalism as 
“the outcome of which is not foreseen”. Demers [17] de-
fined experimental as “anything that has departed signifi-
cantly from norms of the time…” [p.7] and continues by 
the two assumptions of “…that experimental music is dis-
tinct from and superior to a mainstream-culture industry 
and that culture and history determine aesthetic experi-
ence" [p.139]. Experimental music does not only rely on 
harmony and melody [6]. Experimental music explores 
the continuum between rhythm, pitch, and noise; the no-
tion of organized sound; the expansion of temporal field; 
and the morphologies of sound. In this study, our defini-
tion of experimental music encompasses experimental 

electronic music such as acousmatic music, electroacous-
tic music, noise music, soundscape compositions as well 
as experimental music with acoustic instruments such as 
free improvisation or improvised music. We also include 
Contemporary Art practices that use sound as a medium 
in our definition of experimental music.  

There are many applications in which a computational 
model of MER for experimental music would be benefi-
cial. MER computational models can be used in the sys-
tem architecture of Musical Metacreation (MuMe) sys-
tems for experimental music. MuMe is the partial or 
complete automation of musical tasks [34]. A variety of 
MuMe systems apply machine listening. Machine listen-
ing is the computational modeling of the human hearing. 
In that sense, a computational model for MER in experi-
mental music can be useful to design a machine listening 
algorithm for a MuMe system. Moreover, we can use 
computational MER models in the analysis of experi-
mental music works. Also, we can design mood enabled 
recommendation systems for experimental music albums 
using a MER model for experimental music.  

Still, MER has several challenges. First, music percep-
tion can be dramatically different if listeners are from dif-
ferent regions of the world and have various unique cul-
tural backgrounds [5,18]. Second, it is difficult for re-
searchers to collect ground truth data to cover a wide 
range of population that well distributed in different parts 
of the world [5]. Third, in the previous studies, research-
ers designed listening tests that asked participants to an-
notate the music pieces by rating their emotion perception 
of the music pieces [41,49]. However, the cognitive load 
of rating emotion is heavy for participants [9]. This 
causes the low-reliability of the annotations [19,44]. 
Fourth, the level of participant’s agreement on the emo-
tion of a music clip varies because the perception of mu-
sic is subjective. Even for one individual, the ratings can 
change during a day [49]. Fifth, in the case of experi-
mental music emotion recognition, there is no annotated 
dataset available. The current MIREX MER task is the 
case of pop music emotion recognition. 

To overcome these difficulties, we designed a ranking-
based experiment to collect ground truth annotations 
based on a crowdsourcing method. Crowdsourcing meth-
od is to elicit a large amount of data from a large group of 
people from online communities [8]. Our ground truth 
annotations were gathered from 823 annotators from 66 
countries, which covers diverse cultural backgrounds. 
Then, to reduce the cognitive load, we used a ranking-
based method to ask participants to do pairwise compari-
sons between experimental music clips. The ranking 
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based approach only needs relative comparisons instead 
of absolute ratings. This improves the objectiveness of 
the ground truth data. We applied the Quicksort algorithm 
to select comparisons during the data collection stage to 
reduce the workload (see Section 4.1). Then, we proposed 
a SRSVM method and compared it with other ranking 
algorithms. The results show that SRSVM is better than 
four other ranking algorithms regarding experimental 
music emotion recognition.  

The database, containing the 140 music clips and the 
annotations, can be freely downloaded at 
http://metacreation.net/project/emusic/. We believe that 
public release of such a dataset will foster research in the 
field and benefit MER communities. The main contribu-
tions of this paper are thus four-fold:  
• We provide a music corpus, EMusic. The corpus 

includes 100 experimental music clips and 40 
mainstream music clips. 

• We use a crowdsourcing method to collect the 
pairwise ranking data for experimental music clips, 
and share an annotated experimental music dataset. 

• We proposed the SRSVM method for experimental 
music emotion recognition and compared our ap-
proach with other ranking algorithms. 

• We compared the annotations of experimental mu-
sic with that of other music genres.  

2. RELATED WORKS 

The Music Information Research Evaluation eXchange 
(MIREX) community evaluates systems for Audio Music 
Mood Classification every year. Studies have been classi-
fied into two major categories based on the model of 
emotion: categorical and dimensional approaches.  

2.1 Categorical Approaches in MER 

Categorical MER approaches use discrete affect models 
to estimate emotion. Discrete affect models propose that 
we can describe all emotions using a set of basic emo-
tions. These basic emotion categories are happiness, sad-
ness, fear, anger and disgust [22, 33], shame, embarrass-
ment, contempt and guilt [3], as well as exuberance, anx-
ious/frantic and contentment [32]. There is still no con-
sensus on the discrete emotion categories of music [32].  

In the previous studies with categorical MER ap-
proaches, researchers conducted experiments to collect 
the ground truth annotations. Then, researchers used the 
audio features of music clips with classification methods 
to model the relationship between audio features and 
emotion categories [23, 45, 46]. 

2.2 Dimensional Approaches in MER 

Dimensional affect models use a Cartesian space with 
continuous dimensions to represent emotions [7,14,40,48]. 
The simplest dimensional affect model has two dimen-
sions: valence and arousal. Other dimensional affect 
models with additional dimensional such as tension, po-
tency, and dominance have also been proposed in the lit-
erature [32]. MER studies use dimensional affect models 
to compute continuous values that represent the emotion 
of audio samples. These studies focus on continuous ma-

chine learning models such as regression models. Re-
searchers gather the ground truth data by conducting an 
evaluation experiment in which the participants label the 
emotion music clips on a dimensional affect grid.  

2.3 Rating or Ranking 

Affective ratings instruments have been used for collect-
ing affective annotations. Researchers have used such 
tools in video emotion recognition [27, 30], music emo-
tion recognition [11], speech emotion recognition [35], 
soundscape emotion recognition [20] and movement 
emotion recognition [43]. However, recent studies show 
that rating based experiments have limitations and fun-
damental flaws [13]. Rating-based experiments neglect 
the existence of interpersonal differences on the rating 
process. In addition, rating emotion in a continuum is dif-
ficult because annotators tend to score the samples based 
on the previous ratings instead of their non-biased feel-
ings [44]. Yang and Lee indicated that the rating-based 
approach imposes a heavy cognitive load on the subjects 
[48]. Moreover, the contextual situation of annotators can 
affect the consistency of ratings [12]. 

Ranking has been an alternative approach for eliciting 
responses from subjects [9, 39, 48]. Metallinou and Na-
rayanan found that there is a higher Inter-annotator relia-
bility when people were asked to describe emotions in 
relative terms rather than in absolute terms [2]. Yannaka-
kis et al. also showed that the inter-rater agreement of the 
ordinal data is significantly higher than that of the nomi-
nal data [12].  

Yang and Chen designed a ranking-based experiment 
to collect ground truth data and build a ranking model 
recognize the perceived emotion of pop music [9]. The 
result showed that the ranking-based approach simplifies 
the annotation process and enhances the Inter-annotator 
reliability. Hence, we designed a ranking-based method 
to for experimental music emotion recognition, where 
annotators made pairwise comparisons between two au-
dio clips based on valence and arousal. 

2.4 Emotion Taxonomy 

According to previous studies [1, 24], two types of emo-
tions are at play when listening to music. 
• Perceived emotion: Emotions that are communicat-

ed by the source. 
• Induced emotion: Emotional reaction that the 

source provokes in listeners. 

The perceived emotion is more abstract and objective. It 
is the emotion the source conveys. The perceived emotion 
of happy songs is always “happy”. However, the induced 
emotion is more subjective. The same happy music may 
not necessarily induce happiness in the listener. In this 
study, we focus on the perceived emotion of music clips 
because it is more objective. 

3. DATA COLLECTION 

To build a MER system for experimental music, we first 
built an experimental music corpus: EMusic. Then, we 
collected emotion annotations using a crowdsourcing 
method.   



  
 
3.1 Corpus Construction 

In EMusic corpus, there are 100 experimental music clips 
and 40 music clips from 8 musical genres, including 
blues, classical, country, electronic, folk, jazz, pop and 
rock. The 100 experiment music clips are extracted from 
29 experimental music pieces, which are high quality 
works of Electroacoustic music. The 40 music clips are 
selected from 1000 songs database [29]. We segmented 
these compositions using multi-granular novelty segmen-
tation [31] provided in the MIRToolbox [32]. Using this 
automatic segmentation method, we ensure that each 
segment is consistent. Then, we manually chose novel 
clips to create a homogeneous and consistent corpus that 
would not disturb the listeners. A 0.1 seconds fade in/out 
effect has been added to each audio clip. 

Music clips are converted to a format in wav (44100 
Hz sampling frequency, 32 bits precision and mono 
channel). All the audio samples are normalized. Regard-
ing the duration, Xiao et al. [50] showed that the use of 
six to eight seconds is good for presenting stable mood 
for classical music segments. Fan et al. [19] indicated that 
the duration of six seconds is long enough for soundscape 
emotion recognition. Following the previous study, we 
aimed for the average duration of 6 seconds in this exper-
iment (Mean: 6.20s, Std: 1.55s). The duration of clips 
varies because of the automatic segmentation by novelty.  

3.2 Select Comparisons 

To create a robust set of annotations, we need multiple 
annotations per pairwise comparison of audio clips. 
Baveyes et al. [44] found that collecting three annotations 
per comparison is a good compromise between the cost 
and the accuracy of the experiment. Therefore, we follow 
this approach for its feasibility within our experiment. 

To efficiently create pairwise comparisons presented 
to the listeners, we use a Quicksort algorithm [44]. For 
the first iteration of the algorithm, we select one audio 
sample as the pivot. All remaining clips are to be com-
pared with the pivot so that the algorithm generates 139 
comparisons. We then collect three annotations for each 
comparison and determine the result to be the one that 
provided by at least two annotators. In the case that we 
did not select a pivot that has the lowest or the highest 
valence or arousal, we end up with two separate sets after 
the first iteration. Therefore we repeatedly select a new 
pivot in each set until each audio clip received a rank of 
valence and a rank of arousal from 1 to 140. The compu-
tational complexity of the Quicksort algorithm is 
O(NlogN). 

3.3 Online Experiment 
We conduct an online experiment to annotate our corpus 
of experimental music clips with affective labels. We 
used the CrowdFlower1 platform to crowd source annota-
tions from people online. To sort the 140 music clips 
based on valence and arousal independently, we launched 
one task for valence and another task for arousal. 

                                                             
1 https://www.crowdflower.com/ 

 

  

 

Figure 1. The interface of crowdsourcing study. 

At the beginning of the annotation process, subjects 
are provided with the terminology of arousal and valence. 
In our experiment, we used valence to describe perceived 
pleasantness of the sound. We provided subjects with the 
Self-Assessment Manikin [28] at the beginning of the 
task to make sure the task was understood. The Self-
Assessment Manikin is a pictorial system used in experi-
ments to represent emotional valence and arousal axes. Its 
non-verbal design makes it easy to use regardless of age, 
educational or cultural background. We modified the pic-
torial system by adding arrows to inform annotators that 
we were collecting perceived emotion. 

We requested annotators to follow a tutorial to get fa-
miliar with the annotation interface. Annotators were no-
tified that they were required to use headphones to listen 
to the audio clips. We asked them to turn the volume up 
to a comfortable level given a test signal. Annotators 
were then presented with a quiz, where 5 gold standard 
comparisons were provided. These comparisons were 
easily comparable regarding valence and arousal, which 
were carefully selected by experts. The annotators could 
continue to the task only if they achieve an 80% of accu-
racy in the quiz. 

To ensure the quality of the annotations, we tracked 
annotators’ performance by inserting gold standard com-
parisons throughout the tasks. Similar to the comparisons 
in the quiz, these 5 comparisons were easily comparable 
regarding valence and arousal. If their answers were not 
the same as the default answer, they would be noticed by 
a pop out window. If they had strong reason to explain 
their answer, they could message the reason to us. This 
also affects annotators’ reputation on the CrowdFlower. 



  
 

Annotators could listen repeatedly to an audio clip. Af-
ter an annotator had listened to both audio clips, the op-
tion to enter the response was presented in the form of an 
input button. For easing the fatigue that increases natural-
ly during manual data annotation [2], they could pause 
the annotation process at any time and continue at a later 
stage. The volume control bar was disabled so that anno-
tators could not adjust the individual volumes themselves. 
An annotator had to rank 5 pairs of clips before being 
paid US$0.05 and was able to exit the task at any time.  

3.4 Annotation Results 

A total of 823 annotators performed the task from 66 dif-
ferent countries. Most of the workers are Venezuelans 
(31.71%), Brazilian (6.93%), Serbian (6.44%), Russian 
(5.95%) and Bosnians (5.10%). The annotators were from 
the world population and it is unlikely they have a back-
ground in experimental music. This avoids the potential 
bias brought by experts.  

Each pair was displayed to annotators until three anno-
tations are collected for this pair. 823 annotators provided 
2817 comparisons for arousal and 2445 comparisons for 
valence. The 823 trusted annotators had an average accu-
racy of 91.81% in the quiz. Annotators took approximate-
ly 13s to perform a task. This also proves that annotators 
carefully listened to both music clips.   

 
Categories Arousal Valence 

Percent Agreement 0.839 0.801 
Krippendorff’s 𝛼 0.360 0.222 

Table 1. Inter-annotator reliability. 

We evaluate the Inter-annotator reliability based on 
percent agreement and Krippendorff’s 𝛼. Percent agree-
ment calculates the ratio between the number of annota-
tions that are in agreement and the total number of anno-
tations. However, percent agreement overestimates inter-
annotator reliability because it does not consider the 
agreement expected by chance. Krippendorff’s 𝛼 is more 
flexible and allows missing data (comparisons can be an-
notated by any number of workers). Thus, no compari-
sons are discarded to compute this measure. Their values 
can range from 0 to 1 for Percent agreement and from -1 
to 1 for Krippendorff’s alpha.  

In Table 1, the inter-annotator reliability is similar to 
other emotion studies [30, 44]. The percent agreement 
indicates that annotators agreed on 83.9% and 80.1% of 
comparisons. The value of Krippendorff’s 𝛼 is between 
0.21 to 0.40, which indicates a fair level of agreement.  

4. LEARN TO RANK 

4.1 Standard Ranking Algorithms 
The state-of-the-art ranking algorithms can be three cate-
gories: the pointwise approach [42], the pairwise ap-
proach [36] and the listwise approach [10]. The pointwise 
approach learns the score of the samples directly. The 
pointwise approach takes one train sample at a time and 
trains a classifier/regressor based on the loss of the single 
sample. The pairwise approach solves the ranking prob-
lems by using a pair of samples to train and provides an 

optimal ordering for the pair. Listwise methods try to 
minimize the listwise loss by evaluating the whole rank-
ing list. Each ranking algorithm assigns a ranking score to 
each sample, and rank the sample based on the score.  

In the following, we introduce five ranking algorithms: 
ListNet, Coordinate Ascent, RankNet, RankBoost and 
RankSVM. ListNet is a listwise ranking algorithm [10], 
which uses neural networks to predict the ranking score. 
The algorithm calculates the probability of the sample 
ranking within top-k, and computes the difference be-
tween the probability distribution of predicted ranks and 
ground truth data based on cross entropy. Coordinate As-
cent algorithm is a gradient-based listwise method for 
multi-variate optimization [16]. It directly optimizes the 
mean of the average precision scores for each ranking. 
RankNet is a pairwise ranking algorithm, which predicts 
the ranking probability of a pair of samples <A, B>. If 
sample A receives a higher ranking score than that of 
sample B, then the object probability 𝑃!" equals 1, oth-
erwise, 𝑃!" equals 0. The loss function of RankNet is the 
cross-entropy between the predicted probability and the 
object probability. RankBoost is another pairwise ranking 
algorithm [47]. It replaces training samples with pairs of 
samples to learn the association between samples. 
RankSVM is a common pairwise method extended from 
support vector machines [36]. The difference between 
features vectors of a pair of training samples can be trans-
formed to a new feature vector to represent the pair. 
RankSVM converts a ranking task to a classification task. 

4.2 Searching Strategies 

Given a test sample, a ranking model provides a ranking 
score regarding valence/arousal. A ranking score is a real 
number. To obtain the predicted rank of the test sample 
based on the ranking score, we used two search strategies: 
one-by-one search and smoothed binary search.  

4.2.1 One-by-One Search 

First, we obtain predicted ranking scores of the entire 
training set and the test sample. Then, we sorted all clips 
by ranking score to obtain the predicted ranking of the 
test sample. Ties are unlikely to happen since we set the 
value of the score retains 6 digits after the decimal point.  

4.2.2 Smoothed Binary Search 
Smoothed binary search compares the ranking score of a 
test sample with the ranking scores of pivots selected 
from the training set to find the rankings of a test sample 
along the valence/arousal axis. We add a smoothed win-
dow to traditional binary by selecting a group of pivots 
instead of one pivot. Following is the description of the 
smoothed binary search: 
• Given a test sample, pick an odd number of clips 

from the training set that are consecutive on the va-
lence/arousal axis as pivots. The odd number of 
clips avoids the ties. The group of pivots has the 
medium value of valence/arousal among the subset.  

• Predict the ranking score for the group of pivots 
and the test sample, and compare their ranking 
score. The test sample with a score of less than half 
of the pivots comes before the pivots, while the test 



  
 

sample with a score greater than half of the pivots 
comes after pivots.  

• Recursively apply the above steps until the size of 
subsets is 2. The average ranking of these two train-
ing samples is the predicted rankings. 

4.3 SRSVM 

We propose the SRSVM for experimental music emotion 
recognition. The training of SRSVM is the same as 
standard RankSVM. During the testing/ranking stage, 
SRSVM finds the predicted ranking of the test sample 
based on the smoothed binary search.  

5. PERFORMANCE ANALYSIS 

5.1 Features Selection 

We began with a feature set including rms, brightness, 
loudness, spectral slope, spectral flux, spectral rolloff, 
attack leap, regularity, pulse clarity, hcdf, inharmonicity, 
perceptual sharpness, pitch, key, tempo, and 12 MFCCs. 
We used 23-ms analysis windows and calculated the 
mean and standard deviation to represents signals as the 
long-term statistical distribution of local spectral features, 
which ended up with a 56-dimension feature vector [21].  
We used MIRToolbox [32] and YAAFE [4] libraries to 
extract audio features.  

 
Selected Features 
Mean of Root Mean Square  
Standard deviation of Root Mean Square 
Standard deviation of Brightness 
Mean of MFCC 1 
Standard deviation of MFCC 2 
Standard deviation of MFCC 8 
Mean of MFCC 12 
Mean of Hcdf 
Mean of Loudness 
Standard deviation of Loudness  
Mean of Regularity 

Table 2. Selected features for predicting valence/arousal  
 
Before training the model, we build a feature selector 

that removes all low-variance features over the entire 
corpus to select a subset of discriminative features. The 
threshold of variance is 0.02, which is chosen as a heuris-
tic value. This step kept 43 features out of 56 features. 
Then, we used a random forests method, which has ten 
randomized decision trees to evaluate the importance of 
features based on the Gini impurity index. We ended up 
having an 11-dimensional feature vector (see Table. 2). 
Because our dataset includes 100 experimental music 
clips and 40 clips belong to other genres, we tested the 
ranking algorithms using the whole dataset and the subset 
of experiment music separately.  

5.2 Comparing with Ranking Algorithms 

We evaluate the ranking algorithms of experimental MER 
using Goodman-Kruskal gamma (G). Goodman-Kruskal 
gamma measures the association between the predicted 
rankings and the ground truth annotations [37, 38]. G de-

pends on two measures: the number of pairs of cases 
ranked in the same order on both variables (number of 
concordant, 𝑁!) and the number of pairs of cases ranked 
in reversed order on both variables (number of discordant, 
𝑁!). G ignores ties. In our experiment, we had no ties. G 
is close to 1 indicate strong agreement, -1 for total disa-
greement, and 0 if the rankings are independent. 

G =
NS − ND

NS + ND

                                   (1) 

We used the leave-one-out validation method to com-
pare the SRSVM with ListNet, RankNet, Coordinate As-
cent, and RankBoost. For a given test sample, ranking 
algorithms output a predicted valence/arousal score. To 
obtain the predicted rankings of the whole test set, we 
used one-by-one searching strategy and smoothed binary 
search strategy. Then, we measured the gamma between 
the predicted rankings and the ground truth annotation. 

As we can see from Table 3, when we use SRSVM, 
we obtain the best performance when the windows size is 
three samples (G: 0.733, p < 0.001). When the window 
size is 1, the test sample will be compared with one pivot 
iteratively until it falls into a small interval. This becomes 
a standard binary search. After adding a smoothed win-
dow, the test sample is compared with a group of pivots. 
This increases the accuracy of predicting whether the test 
sample is larger or smaller than the pivots. 

 

Algorithm 
One-

by-One 
Search 

Smoothed Binary Search 
 (Number of samples) 

1 3 5 

ListNet 0.044 0.088 0.057 0.022 

RankNet 0.096 0.386 0.269 0.255 
Coordinate 

Ascent 0.191 0.436 0.387 0.486 

Rank-
Boost 0.619 0.679 0.697 0.717 

RankSVM 0.398 0.690 0.733 
SRSVM 

0.697 
SRSVM 

Table 3. Goodman-Kruskal gamma of ranking algorithms 
for arousal recognition using the whole dataset 

Method 
One-

by-One 
Search 

Smoothed Binary Search 
 (Number of samples) 

1 3 5 

ListNet   0.015 0.002 0.049 0.002 

RankNet 0.063 0.155 0.055 0.260 
Coordinate 

Ascent 0.016 0.130 0.195 0.254 

Rank-
Boost 0.438 0.467 0.345 0.440 

RankSVM 0.333 0.490 0.573 
SRSVM 

0.556 
SRSVM 

Table 4. Goodman-Kruskal gamma of ranking algorithms 
for valence recognition using the whole dataset 



  
 

When using the whole dataset, the valence recognition 
is harder than arousal recognition. However, the SRSVM 
still obtains the best performance (G: 0.573, p < 0.001). 
 

Method 
One-

by-One 
Search 

Smoothed Binary Search 
 (Number of samples) 

1 3 5 

ListNet 0.001 0.037 -0.013 0.013 

RankNet 0.110 0.096 0.242 0.299 
Coordinate 

Ascent 0.237 0.515 0.519 0.556 

Rank-
Boost 0.698 0.741 0.740 0.748 

RankSVM 0.300 0.776 0.801 
SRSVM 

0.776 
SRSVM 

Table 5. Goodman-Kruskal gamma of ranking algorithms 
for arousal recognition using the subset that only contains 
experimental music clips.    

As Table 5 shows, when we only consider experi-
mental music, the Gamma statistic of SRSVM for arousal 
recognition has the best result (G: 0.801, p < 0.001). The 
results of the experimental music case are better than the 
results of the case including clips of all genres.  

 

Method 
One-

by-One 
Search 

Smoothed Binary Search 
 (Number of samples) 

1 3 5 

ListNet 0.115 0.037 -0.012 0.036 
RankNet 0.058 0.116 0.246 0.277 

Coordinate 
Ascent 0.067 0.100 0.131 0.106 

Rank-
Boost 0.167 0.236 0.279 0.346 

RankSVM 0.434 0.570 0.795 
SRSVM 

0.628 
SRSVM 

Table 6. Goodman-Kruskal gamma of ranking algorithms 
for valence recognition using the subset that only contains 
experimental music clips.     

Table 6 shows that when we only consider experi-
mental music, the Gamma statistic of SRSVM for va-
lence recognition (G: 0.795, p < 0.001) is significantly 
higher than using the whole dataset.  

From Table 3-6, we can see the best performing model 
is SRSVM with 3 samples as the smoothed window. The 
second best performing model is SRSVM with 5 samples 
as the smoothed window. This result implies that a good 
emotion-recognition can be obtained by using SRSVM. 

5.3 Comparing between Experimental Music and 
Other Genres 

We convert the rankings to ratings to visualize the distri-
bution of the ranking data. This illustration has two as-
sumptions. First, the distances between two successive 
rankings are equal. Second, the valence and arousal are in 
the range of [-1.0, 1.0]. 

 

Figure 2. The distribution of the ground truth annota-
tions, the green dots represent experimental music clips 

From Figure 2, it can be observed that other genres 
have both higher perceived valence and arousal compar-
ing to experimental music. Because we have only 5 sam-
ples per genre, we need to have a large ground truth da-
taset to prove that assumption. The figure also shows the 
negative correlation between valence and arousal of ex-
perimental music clips. To test this, we run a Pearson cor-
relation test on the ground truth data. Our Pearson corre-
lation coefficient is -0.3261, which indicates there is a 
weak negative correlation between the two dimensions. 

6. CONCLUSIONS AND FUTURE WORKS 

We present an annotated dataset for experimental music 
emotion recognition. 140 music clips are ranked along the 
valence and arousal axis through a listening experiment. 
It is available at http://metacreation.net/project/emusic/.  
We presented a SRSVM method to predict rankings of 
experimental music clips regarding valence/arousal and 
compared SRSVM with other ranking method. We also 
compared the valence and arousal of experimental music 
with that of the music of other genres, which shows other 
genres of music have both higher perceived valence and 
arousal than experimental music. 

Even with the smaller number of clips, we found other 
genres have both higher perceived valence and arousal 
comparing to experimental music. In the future, we plan 
to compare the perceived emotion of different genres by 
collecting a larger dataset.  
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