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Classification and segmentation are important but time consuming tasks when using sound-
scape recordings in sound design and research. Background and foreground are criteria when
segmenting sound files according to a signal’s perceptual attributes. We establish the back-
ground and foreground classification task within a musicological and soundscape context, and
present a method for the automatic segmentation of soundscape recordings based on this task.
We present a soundscape corpus with ground truth data obtained from a human perception
study. An analysis of the corpus shows participants have a high level of agreement on the cate-
gory assigned to background samples (92.5%), foreground samples (80.8%), and background
with foreground samples (75.3%). We verify the corpus by training a Support Vector Ma-
chines classifier. An analysis of the classifier demonstrates a similarly high degree of certainty
for background 96.7%, foreground 80%, and background with foreground 86.7%. Further,
we report an experiment evaluating the classifier with different analysis windows sizes, and
demonstrate how smaller window sizes affect the performance of the classifier. The classi-
fier is then implemented in a segmentation system. We present the results of an evaluation on
three segmentation systems: median filter, k-depth lookahead, and a probabilistic algorithm
selecting class association.

0 INTRODUCTION

A soundscape recording (or field recording) is a record-
ing of sounds at a given location at a given time, ob-
tained with one or more fixed or moving microphones.
Audio-based creative practices, such as sound design and
soundscape composition, and problems presented by au-
dio scene monitoring, require analysis and segmentation
of the complex soundscape audio signals to make them
relevant. The sounds in a soundscape are background or
foreground depending on their salient characteristics, such
as proximity, repetition, and spectral attributes. Further,
background and foreground sounds often occur simultane-
ously in a soundscape. Another challenge of working with
soundscape recordings is that it is common for recordings
to be several hours in length, with current recording sys-
tems allowing for days of recording. When working with
soundscape recordings, such as audio scene monitoring
and sound design, the process of analyzing and extracting
regions becomes exceedingly time-consuming.
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We address the problem of segmenting and labelling
sound files into the background, foreground, and back-
ground with foreground classes. In Section 1, we estab-
lish the background/foreground classification task within a
musicological and production-related context with ground-
ing in the soundscape literature. In Section 2, we discuss
related work in the domain of soundscape classification.
Next, in Section 3, we outline the creation of a soundscape
corpus obtained from an auditory perception experiment.
We show results from an experiment evaluating a classifier
trained with this corpus. Then, in Section 4, we describe
the procedure that tests the hypothesis that shorter analysis
windows provide better boundary precision at the cost of
classifier performance. Having established the parameters
of the analysis window size, we investigate different seg-
mentation algorithms and provide the evaluation of these
algorithms in section 5. Finally, in Section 6, we present
our conclusions and suggest directions for future work.
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1 BACKGROUND AND FOREGROUND SOUND
CATEGORIES

In this section, we define the categories background,
foreground, and background with foreground. Background
and foreground are general classes referring to a signal’s
perceptual attributes. These categories are important for
sound designers who mix different recordings when gener-
ating artificial soundscapes. Any sound can be either back-
ground or foreground depending on factors of listening
context and attention. For example, the noise of a drop of
water in a bathtub is accentuated by the bathrooms environ-
ment, whereas it becomes a part of the background texture
when in the ocean. A listeners attention is the second fac-
tor in perceiving a sound as background or foreground. For
example, noise from a TV is foreground when a show is
watched, but becomes background when the viewers atten-
tion is turned to a conversation in the kitchen.

Truax [30] outlines how listening is a dynamic process
of different listening modes. Listening modes can treat any
sound as either background or foreground depending on
the level of attention being paid at any given moment.
However, background listening tends to favour background
sound, just as foreground listening tends to favour fore-
ground sounds.

We present a method of segmenting soundscape record-
ings to address background and foreground sound percep-
tion. For simplicity, we call this the BF-Classification prob-
lem, and our solution the BF-Classifier. Our classifier ac-
counts for context but not attention, primarily because the
system does not have the ability to model attention. i.e. the
drop of water example will work, but the TV example will
not unless the conversation in the kitchen is more promi-
nent in the signal than the TV show.

In regard to listening context, background sounds either
seem to come from farther away than foreground sounds
or are continuous enough to belong to the aggregate of all
sounds that make up the background texture of a sound-
scape. The background texture of a soundscape is synony-
mous with ubiquitous sound, specified by Augoyard and
Torgue [3] as - “a diffused sound that is omnidirectional,
constant, and prone to sound absorption and reflection fac-
tors having an overall effect on the quality of the sound”.
Urban drones and the hum of insects are two examples of
background sound. Conversely, foreground sounds are typ-
ically heard as standing out clearly against the background.
In soundscape recording, there may be either background
sound, foreground sound or a combination of both.

2 RELATED WORK

From a listeners perspective, the background and fore-
ground of a soundscape account for the disparity of differ-
ent sounds in the environment. When analyzing and com-
bining different soundscape recordings in research or prac-
tice, segmenting the audio file based on these categories is
an important task. The literature on sound design research
demonstrates similar approaches of selecting specific sec-

tions of recordings from both semantic and salient criteria.
For example, Eigenfeldt et al. [10], Janer et al. [17], and
Thorogood et al. [29] use a hand-selected procedure of cu-
rating a corpus of recordings for generative systems.

The problem of automatic discrimination of background
and foreground sound has been approached using envi-
ronmental sound classification and segmentation systems.
Moncrieff et al. discuss the delineation of background and
foreground for environment monitoring [22]. Their adap-
tive model updates what is classified as the background
over time, notifying the system of a foreground event
when rapid deviations in the signal occur. Slina et al. [7]
present another approach to classification, addressing the
BF-Classification problem for contextual computing. Slina
et al. demonstrate the algorithm using three separate en-
vironments (a coffee room, courtyard, and subway) with
both background and foreground sound. They report that
the detection accuracy of background sound varies between
82.5% and 92.1% and foreground 63.5% and 75.9% de-
pending on the environmental context.

For the most part, these approaches rely on the monitor-
ing of time alterations of events, which is different from the
BF context here that classifies discrete windows of audio
features from a signal for class association. A wide range
of other approaches model audio signals by testing and
ranking various audio features, classifiers, and windowing
options. For example, content-based music structure anal-
ysis [20], sound identification [5], segmentation and sum-
marization [8], segmentation and classification techniques
in surveillance/conference system [18], and audio-adaptive
bimodal segmentation [1] have put forward different con-
figurations of audio features, classifiers, and windowing
options to model audio signals for specific applications.

Aucouturier et al. [2] present a method of differentiating
between environmental sound contexts, such as park and
urban. They suggest a classification technique for mod-
elling these environmental contexts. In this technique a
Gaussian Mixture Model is trained with the long-term sta-
tistical distribution of Mel Frequency Cepstral Coefficients
- accounting for long durations of audio data, and thus
presents an attractive model for soundscape classification
that often has sounds that evolve over time. However, re-
cent scrutiny of the approach [19] demonstrates that this
technique does not generalize well across different record-
ings. Instead, we adapt a solid approach from the music in-
formation retrieval literature [32], modelling audio features
with a Support Vector Machines classifier. Roma et al. [25]
select this method for segmenting soundscape sound files
based on Gaver’s taxonomy [14] of interacting materials.
Their algorithm segments and classifies an audio file into
2-second analysis windows with an overall classification
accuracy of 84.56%.

Prior work in audio segmentation has focussed on eval-
uating segmentation systems by adapting metrics of es-
tablished music information retrieval methods, such as of
precision, recall, accuracy, and F-Measure [9]. Galliano et
al. [13] describe these measures for the ESTER evaluation
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criteria as the aggregate duration of inserted class events
relative to ground truth segment boundaries, and where
they occur (recall) and where they are detected (precision).
Temko et al. [27] outline a weighted F-Measure, precision,
and recall when defining metrics analyzing segmentation
systems for the application of acoustic events. Ramona and
Gel [24] report the F-Measure when comparing implemen-
tations of SVM classification to segmenting music, speech,
and mixed signals. Wichern et al. [33] report the mean aver-
age accuracy for an HMM segmentation system regarding
performance, ranging between 0.125 and 0.567 depending
on different test conditions.

Our technique of classification and segmentation mod-
els background and foreground sound, a set of perceptu-
ally motivated classes used by sound designers and re-
searchers. We include an audio feature selection step in
our technique, and evaluate our approach with an ex-
periment on the classifiers performance using progres-
sively smaller analysis windows. We evaluat the differ-
ent segmentation systems using precision, recall, and F-
Measure. The contributions presented in this paper include:
establishing the background/foreground classification task
within a musicological and production-related context; cre-
ating a background/foreground labelled soundscape cor-
pus using human participants; describing and presenting
an experiment testing the effect of analysis window size on
boundary precision; finally, we establish and evaluate dif-
ferent segmentation algorithms for fragmenting the back-
ground/foreground parts of soundscape audio signals.

3 BF-CLASSIFER

Our BF-Classifier models the soundscape categories
background, foreground, and background with foreground
sound. We extract audio feature vectors from the BF la-
beled corpus, which is used to train a Support Vector Ma-
chines classifier (SVM). In adopting this supervised ma-
chine learning approach, we first create a corpus of training
data from a perceptual study.

3.1 Corpus
We create the soundscape recording corpus from the

World Soundscape Project Tape Library database [31]
(WSPTL). The WSPTL contains five unique collections
of soundscape recordings, with a total of 2545 individ-
ual sound files amounting to over 223 hours of care-
fully selected recordings. The collections gathered between
1972 and 2010 are comprised of recordings from across
Canada and Europe. The researchers use a Nagra IV-S field
recorder and a pair of AKG condenser microphones. Col-
lections have since been digitized at 44.1kHz 16bit and
stored online at Simon Fraser University.

We select 200 4-second samples from the WSPTL. Inde-
pendent listeners confirmed 4 seconds is a sufficient length
for identifying the context of the sound. Additionally, the
corpus is compact so participants finish the study with min-
imum listening fatigue. Further, the short samples to pre-

serve their class homogeneity for the machine learning.
The types of sounds cover the following six soundscape
categories defined by Schafer [26].r Natural sounds: bird, chicken, rain, sea shore;r Human sounds: laugh, whisper, shouts, talk, cough;r Sounds and society: party, concert, grocery store;r Mechanical sounds: engine, cars, air conditioner;r Quiet and silence: wild space, silent forest;r Sounds as indicators: clock, doorbell, siren.

Samples in the corpus range from indoor and outdoor
settings, both with and without music in the soundscape.
The expert commentary accompanying recordings demar-
cates foreground and background regions, and we subjec-
tively select from these regions based on consistent tex-
ture and dynamics. No normalization is applied to the orig-
inal recordings or the extracted regions. The audio is mixed
down to mono. Thereby, stereo information is lost in favour
of a higher degree of generality of the system for record-
ings not obtained with similar high precision equipment, or
for those recorded in mono.

The study group consists of 31 participants from the stu-
dent body at Simon Fraser University, Canada. Before the
study, an example of each of the categories, background,
foreground, and background with foreground is played,
and a short textual description of the classes presented.
Participants are asked to use headphones when listening
to samples. Samples are played using an HTML5 audio
player object. Depending on the browser software, the au-
dio format for the study is either MP3 at 196 kps or Vorbis
[12] at an equivalent bitrate. Participants have no time limit
and can listen to recordings repeatedly.

Each participant receives the 200 samples in a random-
ized order. They then select a category from a set of radio
buttons after listening to a sample (Figure 1). Participants
confirm a choice by pressing a button to hear to the next
segment. Upon completion of the study, participants clas-
sification results are uploaded onto a database for analysis.

The accumulated study results are used to find the most
agreed upon category for each of the corpus samples using
a simple max operation. We added the 30 results with the
agreement for each category for the final corpus, and dis-
posed of the remaining samples. Figure 2 shows the mean
lines for the participant agreement of class association for
the selected samples1.

A quantitative analysis of responses against the fi-
nal corpus show that a participant agrees on 92.5%
(SD=3.6%) of the background samples class associa-
tion, 80.8% (SD=9.5%) of the foreground samples class
association, and 75.3% (SD= 11.3%) of the background
with foreground samples class association. The minimum
agreement for a single recording categorized as back-
ground is 87% while the highest agreement is 100%.
Further, the lower quartile and upper quartile, 90.3% and

1Corpus and dataset accessed April 2015
http://www.sfu.ca/˜mthorogo/bfcorpus/.
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Fig. 1. The graphical interface presented to study participants.
Responses are entered by the participant using the radio buttons
corresponding to background, foreground, and background with
foreground. The response is logged when the participant requests
the next recording.

96.7% respectively, demonstrate that most people share
the opinion on which sounds from the corpus belong to
the background category. The category foreground shows
a less strong consensus. The minimum agreement for a
recording of this class is 64.5%, the highest agreement is
96.7%, with the lower quartile and upper quartile 73.3%
and 90.3% respectively. Similarly, the category back-
ground with foreground shows the minimum agreement
for a recording as 61.2%; the highest agreement is 96.7%,
with a lower quartile of 64.5% and an upper quartile of
87%.

Fig. 2. Box plots and mean lines for the agreement of labels for
the corpus of background, foreground, and background with fore-
ground recordings. The light grey line represents the overall mean
agreement for the three classes.

3.2 Audio Feature Selection
A recursive feature elimination and selection step auto-

matically selects audio features from a larger set, as de-
fined in [23, 4], extracted from all 4-second samples in
the labeled soundscape corpus using the YAAFE software
[21]. We resampled the audio from 44100Hz AIF format
to 22500 Hz and applied a Hamming window of 1024 sam-
ples with 512 samples overlapping. The mean and standard
deviation of features is calculated and logged. This win-
dowing configuration and subsequent analysis step result
in a high descriptive power for representing the texture and
overall dynamics of the sound. Since we achieve good re-

sults with this method, we did not explore other window
configurations.

We apply a dimension reduction method for features. We
split the corpus into a training set for selecting features
and a validation set for evaluating the classifier. 20% of
the corpus is allocated to the training set, with the remain-
ing 80% allocated to validating the classifier. Features are
recursively eliminated using the training set and an SVM
technique [15] implemented in the WEKA software [16].
We select the top 10th percentile of ranked audio features
for our experiment. Table 3.2 shows the reduced set of de-
scriptors. The audio feature set contains spectral and per-
ceptual audio descriptors, including the means and stan-
dard deviations of Mel Frequency Cepstral Coefficients, to-
tal loudness, perceptual spread, and spectral flux. We think
it significant that perceptual features that model the human
auditory system perform better than those that do not in
this classification task, where the perception of the human
listener is an important consideration. As such, properties
of the selected features, such as loudness response curves,
apply well to soundscape-related classification tasks.

Table 1. The set of audio features output from the
analysis of the soundscape corpus test set.

Audio Features

MFCC mean (coef. 8,11,15,28,36)

MFCC std dev (coef. 1,2,5,6,18,20,32,34)

Total Loudness mean & std dev

Perceptual Spread mean

Spectral Flux std dev

3.3 Support Vector Machines
A Support Vector Machines (SVM) classifier is a binary

non-probabilistic linear classifier that learns the optimal
separating hyperplane of the data with the maximum mar-
gin. Non-linear decision boundaries, as is common with
complex environmental sound, can be represented linearly
in a higher dimension space than the input space with a ker-
nel function. Additionally, the SVM can be extended for
multi-class problems such as our BF classification prob-
lem using the one-versus-the-rest approach. We use the C-
support vector classification algorithm with a linear kernel
suited to smaller feature vectors and training set [6].

3.4 Evaluation of the Classifier
We trained the classifier with features and labels from

the corpus training set and evaluated with the corpus val-
idation set. We perform an evaluation of the BF-Classifier
using a 10-fold cross-validation strategy on the corpus val-
idation set. This method randomly partitions the validation
set into k = 10 equally sized sub-samples before iteratively
testing the remaining sub-samples against each k-partition.
The results summary is shown in Table 3.4. The classi-
fier achieves an overall true positive rate of 87.77%. An
inter-rater reliability analysis using the kappa statistic de-
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termines the consistency of the classification. In this case,
the kappa statistic of 0.8167 shows a strong reliability of
the classification results over the 10-fold validations.

Table 2. Average true positive and false
positive classification of SVM classifier.

True Positive 87.77%

False Positve 12.22 %

Kappa statistic .8167

In Table 3.4, the true positive rate for background clas-
sification (96.7%) shows most of the samples identified as
background were labelled as such. The BF-Classifier cor-
rectly classified a majority of the foreground (80%) and
background with foreground (86.7%) samples correctly,
showing a similarly high true positive rate for these classes.

Table 3. Detailed accuracy by class of
SVM classifier for the categories

background (B), foreground (F), and
background with foreground (BF).

Class True positive rate

B 96.7%

F 80%

BF 86.7%

4 DIMINISHING ANALYSIS WINDOWS

The corpus evaluation described in Section 3.4. is based
on the mean and standard deviation of features over a 4-
second length window since it is the size of the sounds
humans were using for the classification task of the cor-
pus. It is practical for the BF-Classifier to delineate more
precisely the segment boundary using smaller window
lengths. Hence, we conduct an experiment to evaluate the
classifier on smaller analysis windows.

In this experiment, we evaluate the classifier on 2-
second, 1-second, 500-millisecond, 250-millisecond, and
125-millisecond analysis windows to ascertain if perfor-
mance degrades with diminishing window lengths. First,
we generate a ground truth corpus of BF labeled segments
for setting a benchmark of the classifier performance and
generalizing the classifier under the test conditions. Labels
are automatically applied to samples in the corpus using the
trained BF-Classifier described in Section 3.3. We generate
the ground truth corpus for this experiment from recordings
in the commercially available Sound Ideas XSeries sound
effects database2. Those recordings are professionally cu-
rated with a similar range of foci to the WSPTL corpus de-
scribed in Section 3.1. The BF-Classifier was used to seg-
ment a subset of the files from the database.

We apply the following method of refining the corpus.
Firstly, adjacent analysis windows with the same BG-label

2Sound Ideas website accessed April 17 2015,
www.sound-ideas.com

are concatenated. Next, we extract a 4-second span cen-
tred on the mid-point of regions longer than two segments
(i.e., > 8 seconds). Lastly, the extracted segments are run
through the BF-Classifier for verification with the initial
classification. Samples violating the original classification
are rejected. One remaining segment from each analyzed
file is chosen at random resulting in 142 foreground, 407
background, and 171 background with foreground samples
in the corpus3.

Next, the BF-Classifier classifies each labeled segment
with the different length analysis windows and we log the
results. We analyze this data using established music in-
formation retrieval methods of precision, recall, and F-
Measure [9]. Figure 3. shows the precision, recall, and F-
Measure of the BF-Classifier on analysis windows of 4 sec-
onds, 2 seconds, 1 second, 500 milliseconds, 250 millisec-
onds, and 125 milliseconds. An F-Measure of 0.0 demon-
strates the poorest performance while an F-Measure of 1.0
means perfect retrieval. Although we expect a 4-second
window to achieve perfect recall, we include it here as an
indication of the change in classification performance with
smaller analysis windows.

The BF-Classifier performance remains high for all anal-
ysis windows for background, with only a moderate rate of
decline (F: 1.0, 0.91, 0.84, 0.84, 0.8, 0.78). Background
with foreground classification exhibits by far the greatest
performance losses (F: 1.0, 0.78, 0.44, 0.44, 0.34, 0.19).
That rapid decline corresponds to smaller analysis win-
dows, which is not surprising since the unique combina-
tion of background and foreground sounds can cause the
moment to moment classification errors for this class. Fore-
ground classification is reasonably stable after an initial de-
crease in performance (F: 1.0, 0.72, 0.72, 0.64, 0.48).

Fig. 3. Precision (grey), recall (light grey), and F-Measure (dark
grey) of the BF-Classifier on analysis windows of 4 seconds, 2
seconds, 1 second, 500 milliseconds, 250 milliseconds, and 125
milliseconds. Foreground (triangle), background (diamond), and
background with foreground (square).

3Corpus and dataset accessed April 2015
http://www.sfu.ca/˜mthorogo/bfcorpus/.
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5 SEGMENTATION

In this section, we propose a segmentation algorithm
for complimenting the BF classifier. Three different ap-
proaches to segmentation are evaluated: a median filter,
k-depth lookahead, and a technique maximizing posterior
probability for BF-classes. The aim of the segmentation al-
gorithm here is to group BF-classified windows perceived
as belonging to the same class. We describe the corpus used
for experiments. Next, the segmentation algorithms are de-
fined. Finally, we evaluate the segmentation algorithms and
report on the results of the experiment.

5.1 Corpus
The following evaluation experiments are carried out on

a ground truth set of BF-labelled samples. The ground truth
set contains 600 BF samples. To remove any bias toward
the classifier on the sample length, the segment boundaries
vary in duration between 3 and 6 seconds. Further, to keep
the number of transition between classes fair, samples are
arranged by BF-label permutations that are concatenated in
such a way as no BF-label repeats, i.e. the transition from
one sample to the next is always a different BF-label.

To obtain the ground truth set, we generate a corpus
of BF-labelled regions with a 6-second duration using
the method outlined in Section 3.4. Ground truth sam-
ples are chosen at random and truncated between 50%
and 100% of the original duration based upon a uniform
random sampling. The total duration of segment bound-
aries labelled with foreground is approximately 890 sec-
onds, background 890 seconds, and background with fore-
ground is 900 seconds. Experiments evaluating the seg-
mentation algorithms are carried out using this corpus and
the BF-Classifier described in section 3.3, with audio fea-
ture statistics on 250ms analysis windows.

5.2 Median Filter
A simple median filter smooths the SVM confidence in-

tervals on classified analysis windows [24]. The window
size has been empirically tuned to 7 frames, which corre-
sponds to a 1.75s window. Next, the class for maximizing
the posterior probability is selected for analysis windows.
Finally, adjacent analysis windows with the same BF-label
are concatenated.

5.3 k-depth Lookahead
The k-depth segmentation system operates by looking

ahead for a BF-label and backtracking to reclassify, and as
such, relabels segments when it encounters the initial class.
The lookahead length k is parameterized for concatenating
segments to different depths. For example (see Figure 4.),
k = 3 will conduct a label equality test with the analysis
windows three positions ahead, and decrement the position
until the result of the test returns true, or the starting posi-
tion is reached. A small k value will result in grouping seg-
ments with the same label for sounds with relatively short
duration but at the cost of losing the coherence of more

sparsely distributed sounds. A k value of 1 (one) has the
same effect as concatenating adjacent segments with the
same class label. Larger k values will result in grouping
intermittent sounds spread over larger intervals, but with
a greater likelihood of grouping sounds not belonging to-
gether. The value of k has been empirically tuned to look
ahead seven frames, corresponding to 1.75 seconds.

5.4 Maximizing Posterior Probability
The Maximizing Posterior Probability (MPP) algorithm

computes the function maximizing the posterior probabil-
ity of a class based on symbolic level BF-labelled windows.
The algorithm iterates over the length of the sound file
computing the class probability from a subset of the win-
dows (see Figure 5.). In the case of ties, the initial analysis
label is given precedence. The size of the subset is empiri-
cally tuned to a length of 4, corresponding to 1 second.

5.5 Metrics
We use an evaluation scheme with three standard met-

rics - precision, recall, and F-Measure, to evaluate the seg-
mentation algorithms on their ability to retrieve items for a
given BF-class, and the relevance of those items retrieved
[13]. These measures take into account the aggregate du-
ration of inserted class events in relation to ground truth
segment boundaries. Recall r denotes how many of the
items detected are relevant while precision p informs us
how many relevant items are detected. The F-measure F
is the harmonic mean of these two measures, calculated as
F = 2 pr

p+r .

Fig. 4. k-depth segmentation system jumping k = 3 then search-
ing k − 1 and backtracking to relabel windows.

Fig. 5. MPP segmentation system with span=3. In this case, all
windows are relabelled as foreground.
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5.6 Results
We compute the precision, recall, and F-Measure to

compare the performance of the segmentation systems, me-
dian filter, k-depth lookahead, and MPP (see Table 4). The
k-depth lookahead technique achieved a higher mean av-
erage precision (0.812) than the MPP (0.802), and median
filter (0.687). In regard to recall, the MPP technique shows
a mean average performance (0.828) slightly higher than
the k-depth lookahead algorithm (0.824). Both these results
are superior to those achieved by the median filter (0.755).
Further, the k-depth lookahead algorithm achieves an F-
Measure (0.813), and then the MPP (0.799), and median
filter (0.678), respectively.

These results suggest that the k-depth lookahead tech-
nique achieves better performance segmenting the corpus
than the other two approaches. However, it should be noted
that this performance approximates the measures of the
classifier given the analysis window of 250ms, which evi-
dently does not improve the overall precision and recall of
classification.

Table 4. Mean average precision, recall,
and F-Measure for median filter, k-depth

look-ahead, and max posterior
segmentation systems.

Segmentation type precision recall F-Measure
median 0.687 0.755 0.678
k-depth 0.812 0.824 0.813
MPP 0.802 0.828 0.799

6 CONCLUSIONS

The BF-Classifier classifies fixed-length analysis win-
dows across the length of the audio file, providing a quick
means of indicating where a difference in classification oc-
curs. We demonstrate the BF-Classifier with a 250ms rect-
angular non-overlapping analysis window by implement-
ing a segmentation system to segment an audio file. We
note the trade-off between boundary resolution and classi-
fication accuracy when using different sized analysis win-
dows. The results of the BF-Classifier and further segmen-
tation approach highlight that an analysis window of this
size will obtain a high degree of performance in delineating
background segments from those with foreground sounds.

Having the BF-Classifier automatically iterate over the
length of the audio file while classifying and labelling seg-
ments with BF-classes happens at a much greater speed
than if done by hand 4. To obtain these results we describe
the creation of a soundscape recording corpus generated
from the results of a perceptual study with human partic-
ipants. Then, we conducted an evaluation of the corpus,
showing it can be modelled using machine learning tech-
niques with performance closely correlated to the average
human classification. Next, we used well-established MIR

4A demonstration of the BF-Classifier can be accessed at
http://www.audiometaphor.ca/bfclassifer

techniques to observe the effect of how different window
lengths affect our classification approach. Finally, we ex-
plored the problem of connecting fragmented sounds to ad-
dress the issue of grouping audio regions of sounds with
longer temporal evolution with three segmentation sys-
tems: median filter, k-depth lookahead, and maximizing
posterior probability.

Soundscape classification continues to provide many
challenges. Not in the least is the subjective interpre-
tation of soundscape, demonstrated by the disparity be-
tween participants classifications of soundscape samples.
We have shown in other work [28, 11] the feasibility
of modelling properties of a soundscape, such as affec-
tive representations of pleasantness and eventfulness. The
perception-based classification and segmentation of sound-
scape recordings will be tremendously useful for sound
designers in research and creative practice. As part of
our larger research goals, we will be applying these tech-
niques to computer-assisted tools for sound designers and
researchers.
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