
AUTOMATIC RECOGNITION OF EVENTFULNESS AND 
PLEASANTNESS OF SOUNDSCAPE 

Jianyu Fan 
Simon Fraser University, SIAT 

250-13450 102 Avenue 
Surrey, Canada 
jianyuf@sfu.ca 

Miles Thorogood 
Simon Fraser University, SIAT 

250-13450 102 Avenue 
Surrey, Canada 

mthorogo@sfu.ca 
  

Philippe Pasquier 
Simon Fraser University, SIAT 

250-13450 102 Avenue 
Surrey, Canada 
pasquier@sfu.ca  

 

 Bernhard E. Riecke 
Simon Fraser University, SIAT 

250-13450 102 Avenue 
Surrey, Canada 

ber1@sfu.ca 
 
 
 

ABSTRACT 
A soundscape is the sound environment perceived by a given 
listener at a given time and space. An automatic soundscape affect 
recognition system will be beneficial for composers, sound 
designers, and audio researchers. Previous work on an automatic 
soundscape affect recognition system has demonstrated the 
effectiveness of predicting valence and arousal on responses from 
one expert user. Thus, further validations of multi-users’ data are 
necessary for testing the generalizability of the system. We 
generated a gold standard by averaging responses from people 
provided people agreed with each other enough. Here, we model a 
set of common audio features extracted from a corpus of 120 
soundscape recording samples that were labeled for valence and 
arousal in an online study with human subjects. The contribution 
of this manuscript is threefold: (1) study the inter-rater agreement 
showing the high level agreement between participants’ responses 
regarding valence and arousal, (2) train stepwise linear regression 
models with the average responses of participants for soundscape 
affect recognition, which obtains better results than the previous 
study, (3) test the correlation between the level of pleasantness 
and the level of eventfulness based upon the gold standard. 

Categories and Subject Descriptors 
H.5.5 [Sound and Music Computing]: Modeling 

General Terms  
Human Factors; Design, Measurement. Performance 

Keywords  
Soundscape Affect Recognition, Gold Standard 

1. INTRODUCTION 
A soundscape is all the sounds in an environment perceived by a 
given listener at a given time and space. Sound design, 

soundscape composition, and urban design research [1-4] have 
demonstrated the variety of approaches taken to investigate how 
soundscapes affect people for the creation of immersive 
experiences. These literatures show that mood is a significant 
characteristic of human perception of a soundscape. Our research 
aims towards an automatic soundscape affect recognition system 
with which soundscape composers can use to create emotional 
soundscape compositions to evoke a target mood. Sound 
designers will find it more streamlined workflow to add suitable 
sound effects for films. Engineers can design mood enabled 
recommendation systems for retrieval of soundscape recordings.    

In this paper, we explore whether soundscape recordings evoke 
the same emotion to different listeners. Specifically, our study 
tested the effectiveness of a soundscape affect recognition system 
with data from multiple users. Furthermore, an analysis of the 
agreement between user ratings demonstrates a generalization of 
the model. Finally, we present the correlation between arousal and 
valence based upon the gold standard. 

This paper is organized as follows. In Section 2, we cover related 
works that form the basis of the emotional model and prediction 
algorithm. Section 3 details the methods, including, dataset, audio 
features, online study, machine learning models, and 
implementations. Section 4 describes the evaluation results. 
Finally, we present our conclusion and future work in Section 5. 

2. RELATED WORKS 
Automatic music emotion recognition is an open problem [5]. The 
annual Music Information Research Evaluation eXchange 
(MIREX) is a community-based framework for formally 
evaluating music-IR systems and algorithms, which includes 
music mood recognition as a task for the first time in 2007 [5]. 
The MIREX tasks are limited to musical content, which is a tiny 
proportion of all possible soundscapes. 

Two rigorously studied models of emotion are the discrete and 
dimensional models. The discrete model classifies a document 
into one of a finite number of categories [13]. On the other hand, 
the dimensional model, as proposed by Russell [10], is a 
continuous circumplex space of emotional attributes such as 
pleasantness and eventfulness. Research in the MIREX 
community has studied emotional ratings of music with both these 
models. For example, Eerola et al. [6] report on regression 
analysis of both a circumplex and discrete model for modeling 
music emotion responses. Similarly, Lu, Liu, and Zhang [7] 
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studied mood detection based on a valence-arousal circumplex 
model. 

The soundscape literature describes a similar methodological 
approach for eliciting and modeling emotion responses to auditory 
stimuli. One such case is in Berglund et al. [1], who describe a 
listener survey to ascertain the emotional attributes important for 
soundscape perception. Their results show that the first and the 
second principal component are pleasantness and eventfulness. 
Their metric space, defined by the following axes: pleasant-
unpleasant, exciting-boring, eventful-uneventful, and chaotic-
tranquil, successfully measured soundscape quality. Likewise 
Brocolini et al. [2] conducted a field survey for studying the 
relationship between sound pleasantness and auditory features. 
Their study demonstrated the acoustic scene has a significant 
contribution to one’s evaluation of pleasantness. Therefore, it is 
possible to analyze soundscape apart from the landscape and 
visual aspect of the scene. 

In our study, we use a circumplex model of emotion mapped to an 
affect grid (Figure 1) for acquiring user response data to a 
soundscape. The affect grid is a measurement instrument for 
acquiring continuous data to measure subject’s reaction to 
stimulus. Our work is based on a previous study of the Impress 
system [3], which was designed specifically for automatic 
prediction of soundscape valence and arousal in real-time 
environments. In that system, a corpus of audio files is generated 
using an automatic segmentation algorithm [9][15] that searches 
the online Freesound [24] database for audio regions with 
consistent soundscape characteristic greater or equal to a specified 
duration. The system models audio features and expert user 
responses to soundscape recordings with multiple linear 
regression models. Evaluation of the model showed a good fit of 
features to responses of models of predicting valence (R2 : 0.712) 
and arousal (R2 : 0.71). The details are given in Section 4. 
In our research, we explored the same method for modeling audio 
features and users’ emotion responses. We extend that research [3] 
for generalizing soundscape emotion recognition to a larger group 
of users. Furthermore, we wish to discover how well the model 
performs on predicting valence and arousal with multiple subjects. 

3. METHODS 
3.1 Valence and Arousal Model 
Valence and Arousal model has been widely used in psychology 
studies [8]. Valence represents the pleasantness of a stimulus, 
which in our case is used to report the perceived pleasantness of a 
soundscape. Arousal indicates the intensity of emotion provoked 
by a stimulus. To easily provide explicit affective ratings on our 
valence and arousal model, we made a circumplex ordering of 
affect by using axes separated by 45 degrees: pleasant-unpleasant, 
exciting- boring, eventful-uneventful, and chaotic-quiet (Figure 1). 

3.2 Collection Stage 
3.2.1 Corpus  
According to Schafer, “sounds of the environment have referential 
meaning” [14]. Based on referential meanings, Schafer built six 
categories. 

• Natural sounds: bird, chicken, rain, sea shore; 

• Human sounds: laugh, whisper, shouts, talk, cough; 

• Sounds and society: party, concert, grocery store; 

• Mechanical sounds: engine, cars, air conditioner; 

• Quiet and silence: wild space, silent forest; 

• Sound as indicators: clock, doorbell, siren; 
We selected audio clips following six categories according to 
Schafers taxonomy. As for the database, instead of using 
Freesound database [24], we used Sound Ideas corpus [11] and 
World Soundscape Project [12], which have consistently good 
audio recording quality. 

Sound Ideas is the distributor of the largest available sound effect 
libraries [13] “. It is the world’s leading publisher of professional 
sound effects, offering more than 272 distinct royalty-free 
collections to broadcast, post production and multimedia 
facilities”. 

The World Soundscape Project, founded by Murray Shafer in the 
late 1960s, initiated the modern study of Acoustic Ecology [14]. 
According to him, this project is to “find solutions for an 
ecologically balanced soundscape where the relationship between 
the human community and its sonic environment is in harmony”. 
These corpuses include various audio clips, such as human talking, 
bell, footsteps and vehicle driving. The World Soundscape Project 
was digitalized by Barry Truax and Metacreation Lab1 at Simon 
Fraser University. 

After the preliminary testing, we decided to extract 6-second 
excerpts from each of the sounds we selected, which would leave 
enough time for participants to form an opinion of the valence and 
arousal for a soundscape. Each clip is monophonic. The sample 
rate is 44100 Hz. Regions were selected based on the length of the 
consistency of the audio characteristics using a segmentation 
algorithm by Thorogood and Pasquier [9][15]. 

3.2.2 Online Study 
Participants were 20 students who are taking a sound design class 
from Simon Fraser University. There are 12 males and 8 females. 
The average age is 21.7. To adjust for any learning effects and 
allow users to calibrate their answers, we omitted the affective 
rating of the first five clips. Thus, we had 125 audio clips rated by 
each user in random order. The study was conducted online 
through a web browser2. Excerpts are played through an HTML5 
audio player object, which allows participants to listen repeatedly 
to an excerpt. After a user had listened to an audio clip; the user 
used a mouse to click on the affective grid to enter their response 
(the interface is shown in Figure 3). Soundscape affects are 
represented by values of valence and arousal. The x-axis 
represents the level of valence. For instance, the highest value of 
the valence, pleasant, is shown on the right side of the figure. The 
value of arousal is represented along the y-axis.  

3.3  Data Analysis 
3.3.1 Agreements between Participants 
We used Intraclass Correlation Coefficient to present the 
reliability of measurements of ratings in both valence and arousal. 
It describes how strongly individual in a group resembles each 
other. In our case, both the valence index, with a 95% confidence 
interval of 0.866 to 0.915 and the arousal index, with a 95% 
confidence interval of 0.903 to 0.943, suggests that the ratings 
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provided are reliable enough to use for building models. The 
higher index for arousal suggests that it is easier for observers to 
agree on the level of eventfulness than the level of pleasantness. 

 

 

 

 

 

Because of the high agreements on affective responses towards 
soundscapes, we can build machine-learning models to predict the 
level of pleasantness and level of eventfulness. Given that this is a 
supervised machine-learning task, it is necessary to choose gold 
standard for the labels assigned to samples in the training set. We 
obtained the gold standard by averaging responses provided by 20 
participants. 

3.3.2 Audio Features for Modeling Soundscape 
Based on the previous study [3], our audio feature vector contains 
Total loudness, Perceptual spread, Perceptual sharpness, Energy, 
Spectral Flatness, Spectral Flux, Spectral Roll-off, Spectral Slope, 
Spectral Variation and 40 MFCCs calculated using the BOF 
approach, which results in an 98 dimensions feature vector. 

Total loudness is a feature that describes the psychological 
correlate of physical strength, (i.e., the sensation of intensity). The 
perception of loudness differed depending on the frequency of the 
sound [17]. Zwicker utilized principles such as equal loudness 
contours, critical band theory and the effect of sound fields. He 
considered the difference of perceptual loudness associated with 
each band along the Bark scale. The total loudness is the sum of 
the individual loudness from all bands [16]. 

The distance between the highest loudness value along the Bark 
scale and the total loudness is called perceptual spread. The 
perceptual equivalent to the spectral centroid but computed using 
the specific loudness of Bark bands is known as perceptual 
sharpness [17]. Energy is computed as root mean square of an 
audio Frame [17]. 

Spectral flatness is computed by using the ratio between 
geometric and arithmetic mean [17]. Spectral flux is the flux of 
the spectrum between consecutive frames [17]. Spectral roll-off is 
the frequency so that 99% of the energy is contained below [17]. 
Spectral slope is computed by linear regression of the spectral 
amplitude [17]. Spectral variation is the normalized correlation of 
the spectrum between consecutive frames [17]. 

Mel-frequency cepstrum coefficients (MFCCs) are common 
features in speech recognition systems recognizing people from 
their voices [18]. They have also been used in timbre recognition 
[19]. MFCCs are short-term spectral-based audio features. Mel-
frequency is based upon the human auditory system, which does 
not have a linear perception of sound and maps different 
frequencies to perceived pitches. 

Based on the previous study [3], we extracted audio features on 
sound recording regions formatted in AIF at a sample rate of 
22500 Hz. Each excerpt is 6 seconds. Audio features were 
extracted with a 23ms Hanning window and a step size of 11.5 ms. 
The sliding window results in frames of 512 samples. Considering 
the similar processing methods of audio clips, we utilized the bag 
of frames technique [20], which considers frames that represent a 
signal having possibly different values. 

3.3.3 Stepwise Multiple Linear Regression Models 
In standard multiple linear regression models, all independent 
variables are used for analyzing at the same time. It 
straightforwardly explained the relationship between audio feature 
vectors and affect rating. 

Y! =   A +   β!X! +   β!X! +⋯+   β!X!                  (1) 

Where Y!  is the predicted response, X!…! , are the predictor 
variables, A is the value of Y! when all X!…! are equal 0, β!…! are 
the regression coefficients. We built separate models for 
predicting valence and arousal. The stepwise multiple linear 
regression models take advantage of the stepwise method, which 
identifies the major predictors that influence the dependent 
variable. 

Because of the effectiveness of the model in the previous work, 
we decided to use the same machine-learning model, a both-way 
stepwise multiple linear regression model, which combines the 
standard multiple linear regression model with stepwise selection 
methods. It selects the most effective set of predictors for fitting 
the pleasantness and eventfulness models to predict both valence 
and arousal values based on predictor variables, including audio 
features discussed in the previous section. 

The forward stepwise multiple linear regressions begin with no 
variables. Iteratively, it selects the variable that increases R2 the 
most. When none of the remaining variables are significant, the 
model will not add new variables. The backward stepwise 
multiple linear regressions begin with all variables. Iteratively, it 
removes the least significant variable. When there are no 
nonsignificant variables remain, the model will not remove 
variables. 

Both-way stepwise multiple linear regressions combine above two 
stepwise models. It adds new variables. After each step, all 
variables in the model are checked to see if their significance has 
been reduced below the specified threshold. The model will 
remove nonsignificant variables, which also solves the problem of 
collinearity. Therefore, our model identifies the major predictors 
that influencing the dependent variable. 
3.4 Implementation 
We used SoX [21], a command line utility to convert audio 
formats from Wav to AIF. As for audio segmentation, we used the 
pydub library [22]. Audio features were extracted using the 
YAAFE [17] software package. We used Weka, a machine-
learning tool [23] for training and testing the model. Other data 
analyses were implemented in Python. 

Figure 1. Online Study Interface: the X-axis represents 
valence (pleasantness). The Y-axis represents arousal 
(eventfulness). Users simultaneously evaluate on both 
dimensions by clicking their cursor on the grid, as 
illustrated by the white dot. 



4. RESULTS AND EVALUATION 
In this section, we first present results of individual models of 
each participant, which is trained based on each participant’s data. 
Then, we present the results of gold standard model, which is 
trained based on the average responses of 20 participants. 

4.1 Evaluation Approach  
We use the coefficient of determination (R2) to evaluate the 
performance of our models. R2 has been widely used for 
indicating how well the data fit a linear regression model. It 
represents the amount of variability explained by the regressors in 
the model. A R2 is defined in (2), with fi being the prediction made 
by the model and 𝑦 being the mean of the ratings. R2 describes the 
ratio of the variance of the model’s predictions to the total 
variance. Results of the previous Impress system are used to 
compare with our results. 

𝑅! = 1 −   
𝑆𝑆!"#
𝑆𝑆𝑆𝑆!"!

 

       𝑆𝑆!"# =    (𝑦! − 𝑓!)!!                              (2) 

𝑆𝑆!"! =    (𝑦! − 𝑦)!

!

 

We used 10-fold cross validation and calculated the mean square 
error (MSE) to evaluate the prediction accuracy of the linear 
regressions. An MSE is defined in (3), where the 𝑦! is the 
prediction made by the system and 𝑦!  is the user’s rating. It 
indicates the error of the model in making prediction on unseen 
data. 

𝑀𝑆𝐸 =    !
!

(𝑦 −   𝑦!)!!
!!!                            (3) 

4.2 Gold Standard Model 
We built a gold standard model by training the model with the 
gold standard data, which is the average response of 20 
participants. We used 10-fold cross validation to test our model of 
using six categories described in section 3.2. In addition, we used 
10-fold cross validation to test our model without the category of 
“sound as indicators” in order to study the influence of semantic 
information on perceived pleasantness and eventfulness evoked 
by soundscapes. Furthermore, we tested our model by only using 
data from “sound as indicators”, “natural sound”, and “mechanical 
sound” individually. Due to the collection of excerpts of “sound 
and society”, “quiet and silence”, and “human sounds” having less 
than 20 items, these three categories were not tested separately. 

Table 1. Results of Predicting Pleasantness Using the Gold 
Standard Model 

Used Categories R2 

All Six Categories 0.567 

Without Sound as Indicators 0.715 

Only Sound as Indicators 0.402 

Only Natural Sound 0.989 

Only Mechanical Sound 0.860 

 

Table 2. Results of Predicting Eventfulness Using the Gold 
Standard Model 

Used Categories R2 

All Six Categories 0.816 

Without Sound as Indicators 0.876 

Only Sound as Indicators 0.737 

Only Natural Sound 0.800 

Only Mechanical Sound 0.983 

 

The results of predicting pleasantness using the gold standard 
model are shown in Table 1. When we use all six categories, the 
R2 for predicting pleasantness is 0.567, which indicates the model 
explains 56.7% of the variance of the data. Features that were 
identified as good predictors include mean of Total loudness, 
stdDev of Perceptual Sharpness, stdDev of MFCC5, mean of 
MFCC18, mean of MFCC32, and mean of MFCC23. 

When we remove the category of “sound as indicators”, however, 
the results of predicting pleasantness is 0.715, which indicates the 
audio features vector explained 71.5% of the variance (R2 = .715, 
F(7, 72) = 29.35, p < 0.001). We assume semantic information 
plays an important role in evoking pleasantness of listeners, which 
improve the performance in our case. The low R2 (.402) from only 
using data from “sound as indicators” also supports our 
assumption. Table 1 also shows us that when only using 
“mechanical sound” or “natural sound”, our model obtains great 
prediction results of predicting pleasantness. 

Table 2 shows the results of our model of predicting eventfulness. 
The R2 of predicting eventfulness using all six categories is 0.816. 
Features that were identified as good predictors include mean of 
Total loudness, stdDev of Total loudness, mean of Energy, 
stdDev of Spectral Flatness, mean of Spectral Roll-off, mean of 
Spectral Variation, mean of MFCC2, mean of MFCC28, stdDev 
of MFCC5, and stdDev of MFCC26. 

As for using five categories without “sound as indicators”, the R2 

is 0.876, which indicates the features vector explained 87.6% of 
the variance (R2 = .876, F (12, 67) = 47.634, p < 0.001). When we 
only tested “sound as indicators”, the R2 decreases to 0.737. Only 
using “mechanical sound” or “natural sound” obtains great 
predicting prediction results. 

In general, the performance of the gold standard model for 
predicting eventfulness (R2= .816) is better than the one for 
predicting pleasantness (R2= .567). It is most likely because the 
energy is more easily differentiable than the emotion. This result 
also echoes the results for the Intraclass Correlation Coefficient of 
valence and arousal described in section 3.3.1. The category of 
“sound as indicators” influent on the general performance because 
of the semantic information. Nonetheless, this influence is not 
reflected by eventfulness as much as pleasantness, which explains 
a weak relationship between semantic information with energy but 
a strong relationship between semantic information with emotion. 
Our gold standard model performs better than the expert user’s 
results in [3]. The application of this study can be founded online2.  

                                                                    
2 http://142.58.183.142/impress 



4.3 Performance of the Model of Individual 
Participants 
We used the same model and correlated it with each participant’s 
ratings individually. In this section, we present the performance of 
the model of individual participants. Previous section shows the 
improvement of the performance when not including “sound as 
indicators”. Thus, we removed audio clips classified as “sound as 
indicators”, which involves semantic information. 

 
 

 

 
 

Our study tested the effectiveness of a soundscape affect 
recognition system with multiple user data. Figure 2 shows the R2 
of all 20 participants models that predicting the pleasantness. Our 
average R2 is 0.467, suggesting that on average; our models 
explain approximately 46.7% of the variability in the ratings of 
valence. (Mean = 0.467, stdDev = 0.132). 

Figure 3 shows the R2 of 20 participants models that predict 
ratings of arousal. Our average R2 is 0.512, suggesting that on 
average; our models explain approximately 51.2% of the 
variability in the ratings of arousal. (Mean = 0.512, stdDev = 
0.106). The individual models produce an average mean squared 
error (MSE) of 0.182 for valence and 0.129 for arousal. 

Figure 2 and Figure 3 shows that the performance of the model of 
individual participant’s is not as goods as the model in the 
previous study, which was initially trained based on an expert’s 
data [3]. However, our golden standard model described in section 
4.2 performs better than the expert user’s results in [3] and better 
than any of the individuals. 

4.4 Correlation between Valence and Arousal 
We run a Pearson correlation test on average value over 20 
participants’ responses of pleasantness and eventfulness. There 
are 120 data points distributed in the affect grid (Figure 4). Each 
data point represents a value of pleasantness and a value of 
eventfulness ranging from -1 to 1. 

Pearson correlation coefficient measures the linear correlation 
between pleasantness and eventfulness, giving a value between +1 
and -1 inclusive, where 1 is total positive correlation, 0 is no 
correlation, and -1 is total negative correlation. Our Pearson 
correlation coefficient is -0.453, which means there is medium 
negative correlation between the two dimensions. This indicates 
that sounds that were rated as having higher arousal were rated as 
having lower valence. We assume this is because human listeners 
think a quiet and peaceful soundscape are more pleasurable. 

 

 

To further test where the negative correlation exists in an affect 
grid (Figure 4), we run Pearson correlation tests on values of 
pleasantness and eventfulness of data points within the affect grid. 
The result is shown in Figure 4. This correlation indicates that 
pleasantness and eventfulness within the affect grid are not 
independent to each other. 

5. CONCLUSION AND FUTURE WORK 
We conducted an online study to obtain ratings from participants, 
evaluated the agreements between user affect ratings, built a 
machine learning model based on gold standard data and tested 
the performance of our automatic soundscape affect recognition 
system. We demonstrated the high-level agreement between 
participants’ responses regarding two quality dimensions, valence, 
and arousal. This facilitates the investigation of the 
generalizability of categories of soundscape affects. Moreover, we 
created a better prediction model using gold standard data. This 
model performed better than the expert user model and any of the 
individuals. Finally, we tested the correlation between responses 
of pleasantness and eventfulness using gold standard data. This 

Figure 4. Correlation Area in the Affect Grid 

Figure 3. R2 of individual participant’s model for predicting 
arousal, the error bars represent the standard deviation 

Figure 2. R2 of individual participant’s model for predicting 
valence, the error bars represent the standard deviation 



study will benefit researchers in various fields, including sound 
studies, psychology, composition, and information retrieval. 

For the next stage, we will test whether this model can be used for 
musical affect recognition and for different genres of music. Also, 
we plan to study the performance of this model for people with 
different cultural backgrounds. 
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