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ABSTRACT
A sound synthesizer can be defined as a program that takes
a few input parameters and returns a sound. The general
sound synthesis problem could then be formulated as: given
a sound (or a set of sounds) what program and set of input
parameters can generate that sound (set of sounds)? We
propose a novel approach to tackle this problem in which
we represent sound synthesizers using Pure Data (Pd), a
graphic programming language for digital signal processing.
We search the space of possible sound synthesizers using Co-
evolutionary Mixed-typed Cartesian Genetic Programming
(MT-CGP), and the set of input parameters using a stan-
dard Genetic Algorithm (GA). The proposed algorithm co-
evolves a population of MT-CGP graphs, representing the
functional forms of synthesizers, and a population of GA
chromosomes, representing their inputs parameters. A fit-
ness function based on the Mel-frequency Cepstral Coeffi-
cients (MFCC) evaluates the distance between the target
and produced sounds. Our approach is capable of suggest-
ing novel functional forms and input parameters, suitable to
approximate a given target sound (and we hope in future
iterations a set of sounds). Since the resulting synthesiz-
ers are presented as Pd patches, the user can experiment,
interact with, and reuse them.

Categories and Subject Descriptors
H.5.5 [Sound and Music Computing]: Methodologies
and techniques.

General Terms
Algorithms

Keywords
Cartesian Genetic Programming; Coevolution; Sound Syn-
thesis
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1. INTRODUCTION
Replicating sounds using synthesis techniques is a prob-

lem frequently addressed in the field of computer music [12].
A well-researched problem is the following: Given a tar-
get sound and a synthesizer, what set of input parameters
can replicate or approximate this sound. Manually estimat-
ing input parameters of a particular synthesizer is usually
difficult and time consuming, especially when there is no
intuitive relationship between the input parameter values
and the sound produced. This search for input parame-
ters is then a good candidate for an automatic optimiza-
tion scheme. Thus, diverse optimization methods have been
used for automatic calibration, such as Particle Swarm [11],
HMM [34], Neural Nets [27], Cellular Automata [29] and Ge-
netic Algorithms [12]. It has been suggested that evolution-
ary approaches such as Genetic Algorithms (GAs) are per-
forming the best to matching musical instrument tones [27].
GAs have been used extensively for estimating the param-
eters of various synthesis techniques [1, 8, 13, 14, 17, 22,
28, 31] and real-world synthesizers [16, 33]. For instance,
we developed a GA-based system [17] able to automatically
calibrate a ModFM synthesizer to replicate harmonic in-
strument tones. We then worked on a more complex prob-
lem: calibrating the OP-1 synthesizer [16]. This commer-
cial synthesizer contains several synthesis engines, effects
and Low-Frequency-Oscillators, which make the parameter
search space large, complex, but also discontinuous. In order
to tackle this difficult problem we proposed using a Non-
dominated Sorting Genetic Algorithm-II (NSGA-II) with
multiple objectives.

In this work, instead of only searching the space of input
parameters for a specific synthesizer, we attempt to solve the
more general sound synthesis problem: given a sound, what
program (sound synthesizer) and set of input parameters can
generate that target sound? We propose a system in which
we represent sound synthesizers as directed acyclic graphs
using the graphical programming language: Pure Data (Pd).
We search the space of possible sound synthesizers using Co-
evolutionary Mixed-typed Cartesian Genetic Programming
(MT-CGP). The proposed algorithm co-evolves a popula-
tion of MT-CGP graphs, representing functional forms of
synthesizers, and a population of GA chromosomes, repre-
senting their inputs parameters. A fitness function based
on the Mel-frequency Cepstral Coefficients (MFCC) evalu-
ates the distance between the target and produced sounds.
We run experiments using contrived and recorded target



sounds. The resulting sounds and synthesizers presented
as Pd patches are available online [5] and are discussed in
Section 5.

2. RELATED WORK
Only a few attempts have been made at solving the general

sound synthesis problem. The resulting systems differ from
other GA sound matching systems [1, 8, 13, 14, 17, 22, 28, 31]
in that they are not only searching the inputs parameters but
also the functional form of the synthesizer.

Takala et al. [30] evolved what they called Timbre Trees.
The nodes of these trees were arithmetic operations, analytic
functions or noise generators. They defined a roulette-wheel
selection operator as well as a crossover and mutation opera-
tor for trees. The user had to listen to the sounds generated
using these trees and interactively evaluate them. Takala et
al used the term Genetic Algorithm to describe their sys-
tem but the term Genetic Programming (GP) seems more
appropriate given the algorithmic process and genetic oper-
ators they defined. They implemented directly their system
in C++ without using any generic sound synthesis library.
While the authors reported that they successfully used their
system to produce an entire class of bee-like sounds (rang-
ing from mosquitos to chain saws), they did not present any
proper evaluation.

More recently, Garcia [9] designed a Genetic Program-
ming (GP) system for automatic generation of sound syn-
thesis techniques. He encodes the instructions for building
sound synthesis topology graphs in the GP expression trees.
Production rules are defined to ensure that any valid ex-
pression tree will produce a valid topology. The nodes of
the topologies are chosen from six different types of basis
synthesizer components (oscillator, addition/multiplication
operators, filters, etc). These topologies have two inputs
parameters that are optimized by a canonical GA. He de-
fined the fitness function as the least-squared error of the
short-time spectra where the frequencies that are not heard
by the average listener are ignored. The system was im-
plemented directly in C++ and Matlab without using any
generic sound synthesis library. Garcia tested his system
with a FM woodwind instrument and verified that it could
generate an expression tree with close similarity to the tar-
get FM equation used to design the instrument. However,
there were higher energies at high frequencies. He also got
modest results evolving a synthesizer for a sampled piano
tone that sounded like a string hit by a hammer.

3. PURE DATA
Pure Data (Pd) [25] is a graphical programming environ-

ment for audio, video, and image processing popular among
musicians, artists and sound designers. Pd programs (called
patches) are made by arranging and connecting boxes within
a visual canvas. There are four types of boxes: object, mes-
sage, GUI (number boxes, toggles, sliders, etc.) and com-
ment. Objects act as self-contained programs, each of which
may receive inputs (through one or more visual inlets), gen-
erate outputs (through visual outlets), or both. Inputs and
outputs can be of two types: audio signal or control message
(trigger, integer or float). A connection can link the output
of a given box and the input of another one (see Figure 1c).
A connection can represent a control signal (represented in
Pure Data by a thin link) or an audio signal (thick link).

A control (audio) signal can only be produced by a control
(audio) object. The presence of the sign ∼ in an object box
indicates that it is an audio object (see Figure 1c). Audio
(control) signals can only be transmitted between specifi-
cally defined audio (control) outlets and inlets.

We represent the synthesizers in Pd as directed acyclic
graphs. Hundreds of object types are available in Pd. In
order to limit the size of the search space, we select only
objects that are the common building blocks of sound syn-
thesizers in Pd. Table 1 shows a selection of Pd objects
available to our search algorithm. This list includes arith-
metic, trigonometric operations for controls and signals but
also oscillators and filters. These objects are commonly used
by Pd programmers [25] to implement major sound synthe-
sis techniques such as additive, subtractive, FM, AM or PM
synthesis. Each of these Pd objects has one to three inlets
and only one outlet. Each inlet (outlet) is connected to one
or more outlets (inlets). Figure 1c shows an example of Pd
graphs evolved by our algorithm. In principle, any synthe-
sizer can be represented as a Pd patch [25].

4. MIXED TYPED CARTESIAN GENETIC
PROGRAMMING

Cartesian Genetic Programming (CGP) [21] is a form of
Genetic Programming that encodes a directed acyclic graph
representation of a computer program instead of a tree. The
genotype, a string of integers, determines the functions of
nodes in the graph, the connections between nodes, the con-
nections to inputs and the locations in the graph where
outputs are taken from. Using a graph representation is
very flexible as many computational structures can be rep-
resented as a graph. Examples of this are artificial neural
networks, electronic circuits or mathematical equations [21].
In this work, we represents Pd patches which are directed
acyclic graphs in their general form.

This graph representation presents advantages over the
classical tree-based GP representation. In a CGP graph,
the output of a given node can be connected to one or more
inputs of other nodes. It is not the case with a tree repre-
sentation where a node output can only be connected to one
other node. In addition, nodes of the graph are not neces-
sary connected indirectly or directly to the output node of
the program (e.g. second node see Figure 1b). As a result,
nodes in the representation can have no effect on the output,
a feature known in CGP as neutrality. This has been shown
to be useful to the evolutionary process [21].

Mixed Typed Cartesian Genetic Programming (MT-CGP)
is an extension of CGP [10] that handles multiple data types.
Contrary to CGP, MT-CGP genotypes represent a linear
string of nodes, without loss of generality. That is to say,
only one row of nodes is used in contrast to CGP which can
have a rectangular grid of nodes. The evolutionary algo-
rithm usually used with MT-CGP is a 1 + 4 Evolutionary
Strategy [10].

To generate programs with multiple data types, MT-CGP
uses an internal data type that can be cast to different data
types. In MT-CGP, the functions inspect the types of the
input values being passed to it, and determine the most
suitable operation to perform. This in turn determines the
output type of the function. In our implementation, we
represent the functions as Pd objects and consider the two
internal data types used in Pd: signal (for audio signal) and



control (for float or integer messages). The functions inspect
the types of the input values being passed to them, and,
given a set of predefined rules (see Table 1), determine the
most suitable Pd object type to implement. For example,
consider a function with a type gene value equals to 0. This
function takes two inputs and returns one output. There are
3 input cases that need to be considered: two controls, two
signals and a signal and a control. The sum of two control is
performed by the + object, the signal addition and sum of
the signal and a control by the + ∼ object. In Figure 1a, the
node 3 has a type gene value equals to 0. It is interpreted
as a + ∼ Pd object (see Figure 1c) because its 2 inputs are
respectively of type signal and control. This node has then
an output of type signal (thick connection).

Figure 1a shows an example of a CGP chromosome (geno-
type) corresponding to the CGP graph (phenotype) in Fig-
ure 1b and the Pd patch in Figure 1c. In this first imple-
mentation, the first 3 genes are not interpreted as we enforce
Pd patch inputs of type control. In future iterations of this
system, we plan to use these genes to code for the type of
the Pd patch inputs. A gene would then code for either a
control input (type 0) or for asignal input (type 1). More
inputs could be added by simply appending new genes at
the beginning of the chromosome.

The following genes are grouped by 5 in genesets (between
brackets). Each of these genesets represents a node of the
MT-CGP graph and are numbered from left to right starting
from 0. Each MT-CGP node represents a Pd object and is
encoded with the five genes (four integers and one double) of
the corresponding geneset. The first gene of a geneset spec-
ifies the Pd object type that the node represents. The next
three genes are used to specify the nodes from which the Pd
object obtains its inputs. These connection addresses are
defined relative to the current node and specify how many
nodes backwards in the genotype/graph to connect. If a rel-
ative address extends beyond the extent of the genome, a
new connection address is computed by taking the relative
address modulo 3 in order to get the address of one of the
3 input nodes. We consider only 3 genes coding for connec-
tions because in our system, the Pd objects available to the
search algorithm have an arity of maximum 3 (see Table 1).

The final gene for each node is a floating point number
that can be interpreted as either a function parameter, or
used to generate values within the program. In our case, this
extra parameter is used as constant for arithmetic operations
(see gene value 9 in Table 1) and also to handle special
cases to determine the most suitable Pd object type to use.
For example, for the gene value 6 that represents the low
pass filter (lop ∼), if there is no signal input, a new gene
value is computed by taking the extra parameter modulo 4
in order to get a arithmetic object (gene value from 0 to 3)
compatible with these inputs.

Table 2 gives the range of each gene types. The extra pa-
rameter can take integer values between 0 and 22500. 22500
is the Nyquist frequency for a sampling rate of 44.1 kHz and
also the upper bound of the human hearing frequency range.

The decoded CGP graph (Figure 1b) is then embedded
in the engine Pd patch (Figure 1c). Nodes that are not
connected directly or indirectly to the output in the CGP
graph are are not visible in the Pd patch as they have no
effect on the sound produced.
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0 c c - - + Addition c
0 s c - - +∼ Addition s
0 c s - - +∼ Addition s
0 s s - - +∼ Addition s

...

3 c c - - / Division c
3 s c - - /∼ Division s
3 c s - - /∼ Division s
3 s s - - /∼ Division s

4 s c - - osc∼ Oscillator s
4 c c - - osc∼ Oscillator c

...

5 s c - - phasor∼ Sawtooth oscillator s
5 c c - - phasor∼ Sawtooth oscillator c

...

6 s c - - lop∼ Low pass filter s
6 c s - - lop∼ Low pass filter s
6 s s s v lop∼ Low pass filter s
6 c c v v s.c. Arithmetic function c

...

9 s - - v +∼ Add a constant s
9 c - - v + Add a constant c

...

Table 1: Rules that determine the type of the Pd object that
each node of the CGP graph represents given its respective
gene value and its input types. s is for signal type, c for
control type, v for the extra parameter and - for unused
parameter. The inputs of the nodes that are considered for
connection for the corresponding Pd object are set in bold.
s.c. is a special case where the gene value is replaced by
the value of the extra parameter modulo 4. The rule is then
reapplied using the result as the new gene value.

4.1 Evolutionary algorithm and parameters
MT-CGP is used with a simple Evolutionary Strategy

1 + n with n = 4. In this setting, the best performing indi-
vidual is selected as the parent. However, if the best perfor-
mance is achieved by more than a single individual the ES
chooses the one with the shortest program (i.e. the individ-
ual with the fewest connected nodes). When this choice is
not unique, the newest individual is selected. Choosing the
shortest program pushes evolution to findmore compact pro-
grams. The preference to newer individuals has been shown
to help MT-CGP find better solutions [10].

In keeping with the 1+n evolutionary strategy, MT-CGP
does not use crossover. This mutation-only approach is typ-
ical in MT-CGP and it appears that a high mutation rate
(10%) performs best [10]. The mutation rate is defined as
the probability of each gene to be modified when generating
an offspring. MT-CGP requires few parameters compared
to other Evolutionary Algorithms [10], even in a distributed
system.



[0, 0, 0, [5, 1, 4, 6, 295], [9, 2, 10, 5, 14773], [0, 2, 9, 7, 14300],

[3, 5, 6, 1, 9520], [7, 9, 3, 3, 4108], [4, 3, 2, 4, 15775], [1]

(a) CGP chromosome (genotype)

(b) CGP graph (phenotype)

(c) Pd patch engine

Figure 1: Example of CGP chromosome decoding

Table 2 lists the parameters of our MT-CGP algorithm.
These values have not been optimized, and therefore it may
be possible to improve the performances of our system by
conducting a parameter sensitivity analysis.

4.2 Similarity measure and fitness function
In this implementation, we consider the Mel-frequency

Cepstral Coefficients (MFCC) to measure the similarity be-
tween the target sound and the sounds generated by the
evolved patches. This sound feature has been initially de-
veloped for the task of speech recognition [20]. It also has
been extensively used in Music Information Retrieval (MIR)
systems [3, 4] and in automatic synthesizer calibration sys-
tems [27]. Yee-King and Roth [27] conducted a study to
compare the performances of four parametric optimization
techniques for automatic synthesizer calibration. The results
of their study showed that the GA, with the MFCC fitness
function, outperformed all the other optimization techniques
in every experiments.

In the pre-processing steps of our algorithm, we extract
the MFCC coefficients from the target sound on each time
window. The same extraction is done on each candidate
sound generated by the evolved Pd patches. Then, we cal-
culate the Euclidean distances between the MFCC vector on
each frame, sum them and finally divide this value by the
number of frames.

Parameter (CGP) Value
Max. number of generations 5000
Gene mutation rate 10%
Genotype length 50 genes
Number of inputs 3
Number of outputs 1
Type gene range [0, 14]
Object input connections range [1, 50]
Extra parameters range [0, 22050]

Parameter (GA) Value
Population size 150
Mutation probability 10%
Bitflip probability 10%
Crossover probability 80%
Tournament selection size 2
Elitism 3%
Bit-string size 15× 3 = 45

Table 2: CGP and GA parameters

Equation (1) shows how we compute this distance between
the sound t and c.

dMFCC(t, c) =

∑Nw
i=1

√∑Nc
j=1(ti,j − ci,j)2

Nw
(1)

The sampling rate is 44100 Hz and we set a window anal-
ysis size of 1024 samples (23 ms) and an overlapping of 512
samples (11.5 ms). Nw is the total number of windows. Nc

is the number of MFCC coefficients that is set to 13. ti,j
(resp. ci,j) is the jth MFCC coefficient on the ith window
for the sound t (resp. c).

The fitness function is then obtained by Equation (2) and
gives a measure of similarity ranging from 0 (not similar) to
1 (perfect match).

fit =
1

1 + dMFCC
(2)

The goal of our optimization algorithm is then to find the
synthesizer (Pd patch) and set of inputs parameters that
maximize this fitness function.

4.3 Evaluation in Coevolutionary MT-CGP
In GP, CGP or MT-CGP, the fitness of a given generated

program is, most of the time, evaluated given a dataset of
inputs [10, 21]. For example, Harding and al. [10] used MT-
CGP to generate programs that classify clinical data into
two classes: cancer and non-cancer. They used the well
known Wisconsin breast cancer dataset as dataset of inputs
to evaluate theirs MT-CGP programs.

In our case, it is not possible to generate a generic dataset
of inputs that would work for every synthesizers generated
by MT-CGP. For a given synthesizer (MT-CGP program),
it is not possible to know in advance what would be good
input parameters to approximate the target sound. To deal
with this issue, we coevolve a population of input parame-
ters using a GA in parallel to the CGP population [15, 24].
In our system, the 3 input parameters of the Pd patches are
integers ranging from 0 to 32767. These 3 integers are en-
coded as 15 bits bitstrings. Any floats or integers can then
be obtained from a given input parameter using arithmetic
or trigonometric Pd objects (see Table 1). Each CGP indi-



Fitness (see Eq (2)) Nb. Pd Objects
Contrived sound max min std mean max min std mean target

additive 0.1572 0.1475 0.0055 0.1509 14 6 4.0415 10.333 20
FM 0.2467 0.1967 0.0273 0.2154 10 5 2.6458 8 7
phase 0.2171 0.1747 0.0225 0.1915 8 7 0.5774 7.3333 8
ring 0.2718 0.2407 0.0220 0.2563 14 10 2.8284 12 20

Recorded sound max min std mean max min std mean target
op1 0.4265 0.4023 0.0580 0.4132 10 8 0.6534 9 X

transient 0.4126 0.4114 0.0001 0.4120 6 5 0.4171 5.3 X
clarinet 0.4212 0.4154 0.0041 0.4183 12 7 3.5355 9.5 X
cello 0.3977 0.3518 0.0325 0.3748 10 7 2.1213 8.5 X

Table 3: Experiment results

vidual is then evaluated using the inputs parameters taken
from the GA population. The best fitness score obtained
over the GA population is assigned to the CGP individual.

For each generation, once the 5 CGP individuals have
been evaluated, each GA individual has been evaluated 5
times and consequently has 5 distinct fitness scores. The
best score among these 5 fitness scores becomes the unique
fitness score of the GA individual. This way, GA individuals,
scoring high with CGP individuals that are not selected in
the next generation, are more likely to be kept in the GA
population. With this mechanism, we maintain diversity in
the GA population (input parameters) and avoid to bias this
population toward a specific CGP individual (synthesizer).

The GA population is then varied using a bitflip mutation
and a 2-point crossover operator implementing an diversity
preservation method (incest prevention strategy [26]). Ta-
ble 2 lists the parameters used in the GA.

A neutral mutation is a mutation that does not change the
CGP phenotype [21]. In order not to perform unnecessary
evaluations, when neutral mutations is detected, the new
CGP offspring is not evaluated but get the same fitness score
than its parent. This offspring also replace its parents to
encourage this kind of mutation that can lead to shorter
graphs. Likewise, when the output of the last Pd object is
of type control for a given CGP individual, the Pd patch
does not produce any sound. The CGP individual is then
not evaluated and it receives the minimal fitness score (0).

4.4 Pd patch design
Any sound synthesizer offers the functionality of changing

the volume. In order to limit the complexity of the search,
we normalize the sounds before evaluating them and provide
a volume parameter on the Pd patch GUI for the user to
adjust.

The difficulty in sound matching is mainly getting the
right timbre and pitch [12]. The temporal envelope can eas-
ily be obtained using, for example, an envelope follower.
Searching the temporal envelope in addition to the other pa-
rameters has shown to increase significantly the complexity
of the problem [16]. Moreover, in most sound synthesizers,
the temporal envelope is usually adjusted separately by the
user. For example, the user may want a longer sustain and
a shorter attack for the sound.

In our implementation, the temporal envelope is not op-
timized during the evolution. In the pre-processing steps of
our algorithm, we extract the target envelope using an en-
velope follower. This envelope is then applied to the sound
at the output of the CGP graph (see Figure 1c). One ad-

vantage of this approach is that the user can easily replace
this envelope by an envelope of her choice: for instance, a
vline ∼ object generating an ADSR envelope.

4.5 Implementation
The evolved CGP graph is embedded in a Pd patch con-

sisting of two canvas. The first canvas is the canvas that the
user sees when opening the patch. This canvas is common to
every patches evolved and acts as GUI. On this canvas, the
user can change the input parameters and the volume. A
bang object has to be triggered to set the input parameters
to the values optimized by our search algorithm. Another
bang object triggers the generation of the sound. This sound
can be listened and its waveform visualized on a graph.

The second patch called engine embeds the CGP graph
evolved by our algorithm (see Figure 1c). The outlet of
the last object of this graph is connected to a high-pass
filter (hip ∼) to remove the DC component of the generated
sound. It is then multiply by the envelope extracted from
the target sound. This envelope is scaled by the volume
parameter that can be adjusted on the GUI.

The implementation of the GA and MT-CGP uses the
DEAP Python framework [6]. The MFCC coefficients are
extracted using the Python wrapper for Yaafe [18]. The
rules to determine the Pd object type given its inputs (see
Table 1) are applied using the Python knowledge-based in-
ference engine Pyke [7]. To speed up the execution of our
search algorithm, we use the Bugaboo cluster that is part of
Compute Canada/Westgrid [32]. We distribute the evalua-
tion of the GA population for each CGP individual over 50
nodes. Pd is embedded in our algorithm using the Python
wrappers offered by libpd [2]. CGP graphs from DEAP are
converted into Pd file format that can be directly loaded
with libpd from memory and processed to get the resulting
sound. Using libpd makes possible to avoid parallel hard
drive access. Instead of exporting the sound as a file, libpd
directly provides Yaafe with the corresponding array of sam-
ples ready to be analyzed. This advantage can seem minor
but it is actually significant in a distributed context where
parallel hard drive access has to be avoided.

5. EXPERIMENTS
To demonstrate the validity of our approach, we have

tested our algorithm with two types of target sounds: con-
trived sounds [23] and recorded sounds. The first category of
sounds are sounds generated by Pd Patches. We generated
four target sounds using additive synthesis, FM synthesis,



Figure 2: Spectra comparisons between approximated and target sounds

phase synthesis and ring modulation synthesis. In this ex-
periment, we know that a solution exists in the Pd patches
space that replicates perfectly this sound. We want to in-
quire whether our algorithm is able to reverse engineer the
Pd patch or discover a novel way to approximate this sound.

The second category of sounds are recorded sounds that
could be instrumental, natural or even synthesized by other
means than Pd. We select four sounds: a clarinet sound, a
cello sound, a transient sound and a sound synthesized by a
commercial synthesizer (the OP-1). In this experiment, we
want to see how well the synthesizers produced approximate
these sounds, but also investigate what kind of program is
found.

Table 3 gives the maximum, minimum, standard devia-
tion and mean across 5 repetitions for each target sound.
For the contrived sounds, one can notice that our system
generates Pd patches that are more compact than the ones
used to initially produce the target sounds. For a given tar-
get sound, the performance of our system is consistent across
experimental repetitions (std < 0.05).

We report in the rest of this section the results of the most
successful runs of our algorithm. Figure 2 compares the
target spectra and their approximations by our algorithm
for 2 contrived sounds (additive and FM) and 2 recorded
sounds (clarinet and transient). The evolved Pd patches
and sounds are available for download online [5].

Our system was unable to perfectly replicate the target
sound in any of the experiments but it did approximate it
using interesting synthesis methods. As the Pd patches are
meant to be played with, it is relevant to look at the effect
of changing an input parameter on the output sound. For
example, in a Pd patch evolved for the flute sound, one input
parameter was directly mapped to the pitch of the sound. It
is then easy to generate another flute sound with a different
pitch using this parameter.

For the additive target sound, the evolved synthesizer gen-
erates a spectrum that matches four of the five harmonics.
When looking at the structure of the evolved patch, we can
see that it is using additive synthesis. Oscillator objects
(osc ∼) are added together using an addition object (+ ∼).
Some patches even use Phasor objects (phasor ∼) (that gen-
erate sawtooth signals whose spectrum contains even and
odd harmonics of the input frequency) instead of oscillator

objects. Coupled with a low pass filter (lop ∼), it makes
possible to generate spectra with a limited number of har-
monics in a more compact way than adding together as many
oscillators as there are harmonics.

For the FM target sound, the evolved synthesizer gener-
ates a spectrum very similar to a FM spectrum with a fun-
damental frequency and side bands frequencies of decreasing
amplitudes. Looking at the structure of the evolved patch,
it uses a combination of FM synthesis and ring modulation
synthesis. Oscillator, Phasor and cosine waveshaper (cos ∼
objects output the cosine of two π times its signal input)
objects are combined to approximate the target spectrum.
The same observations can be made for the experiments us-
ing target sounds from ring and phase modulation.

We experimented with different recorded sounds. One
of the most successful was the clarinet sound. Our sys-
tem was able to find a very compact way of re-synthesizing
this sound. It uses a Phasor centered on the fundamental
frequency of the target clarinet sound and filters the high
frequencies with a low pass filter. The result is a very suit-
able approximation of the target sound. As with the flute
sound, the pitch of the sound was one of the input parame-
ters evolved.

Our system was also to approximate sounds synthesized
by other means than Pd. For example, for a sound generated
by the OP-1, the evolved patch is able to match the frequen-
cies of every harmonics but not their correct amplitudes. It
is also able to match a transient sound even if there are some
unwanted harmonics in the high frequency range. However,
the results were less successful for sounds with time-varying
spectrum such as piano sounds, voice sounds or synthesized
sounds involving LFO.

6. DISCUSSION
Compared to Garcia’s system [9], our system presents

some advantages. First, the synthesizer structures are di-
rectly encoded in the CGP graphs while, in Garcia’s system,
the GP trees had to be mapped to the synthesizer structures
using production rules. Second, acyclic directed CGP graphs
are also more expressive representations than the GP trees.
For example, in a CGP graph, an output of a given node
can be connected to one or more inputs of other nodes. It



is not the case with Garcia’s representation where a node
output can only be connected to one other node.

In Garcia’s system, the input parameters of each synthe-
sizer functions had to be optimized by a GA. Computational
resources were wasted when trying to optimized input pa-
rameters for unpromising synthesizer functions. Co-evolving
a GA population of input parameters in parallel of the CGP
population does a better use of the computational resources.
Synthesizer functions and input parameters are evolved in
parallel. The potential of promising synthesizer functions
are unveiled using fitter and fitter input parameters while
maintaining diversity in the GA population to discover novel
functions. This approach also makes possible to better dis-
tribute the input parameters search between the GA and
CGP. Arithmetic operations and constants (using the extra
parameter) are available to the CGP algorithm (see Table 1).
The search for the best inputs parameters is then made in
cooperation between the GA that adjusts the input parame-
ters and the CGP that changes the way these parameters are
used in the synthesizer function. For example, given an in-
put parameter with value 4, a target value 8 can be obtained
either by, directly modifying bits in the GA bitstring that
encodes the value, or by applying a suitable arithmetic op-
eration in the CGP graph (multiply by the constant 2, add
4, etc.) or both. This balance between GA and CGP in the
input parameter search can be adjusted by modifying the
number of input parameters. For example, if we reduce the
number of input parameters from 3 to 2, more complexity
would be required in the CGP graph to regenerate these 3
initial parameters internally using only 2 input parameters.

Another advantage of our system is the representation of
the synthesizers as Pd patches [25]. Pd counts a large user
base and has a popular commercial version (MAX/MSP)
commonly used in professional audio production. The Pd
patches evolved by our system can easily be modified and
reused in other contexts or applications. Garcia took a dif-
ferent approach and developed his own library to represent
the synthesizers. This library was designed especially to
work with his GP system and was not thought to be easily
modified or reused in other applications. Moreover, more
synthesizer’s components are available with Pd than in Gar-
cia’s system making possible to generate more complex syn-
thesizers and match more complex sounds.

Finally, Garcia’s system required 20 to 200 hours per ex-
periments. As our algorithm is distributed on a cluster,
we are able to limit the time to perform an experiment to 5
hours. For each experiment, we evolve 5000 generations that
represents at most 3.75 × 106 evaluations (5000 × 5× 150).
This number could be highly reduced by fine-tuning the GA
and CGP parameters (see Table 2). We also constrained the
types of Pd objects accessible to our algorithm to the basic
building blocks of synthesizers. Adding more complex ob-
jects, such as more sophisticated filters or envelopes, could
lead to novel function discoveries and a better and faster
convergence.

7. CONCLUSIONS AND FUTURE WORKS
We propose a new approach to automate the design pro-

cess of sound synthesizers using Coevolutionary Mixed-typed
Cartesian Programming. The approach is capable of evolv-
ing synthesizer structures for generating sounds similar to
the target sound (according to the fitness function based
on MFCC coefficients). We represent the synthesizer struc-

tures using acyclic directed graphs and optimize the synthe-
sizer’s input parameters in parallel using a GA. We run a
small number of experiments but their results are promising
and show the potential of using Coevolutionary Mixed-typed
Cartesian Programming as an approach to automate the de-
sign of sound synthesizers.

Our proposed method involves quite many parameters
(see Table 2). We plan to perform a parameter sensitiv-
ity analysis to investigate the robustness of our method and
also determine how to set these parameters in a procedu-
ral fashion. We also plan on performing a more rigorous
quantitative and qualitative comparison with previous simi-
lar systems [9, 30] using, for example, a same benchmark of
target sounds and reporting on their respective performance.

In this work, we limited our search to only one target
sound. We plan to extend our system to search the synthe-
sizer space for synthesizers able to reproduce not only one
sound but a set of sounds. For example, one could search
for a synthesizer able to produce clarinet sounds but also
oboe sounds just by changing the input parameters. Con-
sidering sound as a multi-dimensional object has shown to
be helpful to better explore the sound space [16, 19]. For
future work, we plan to take into account more sound fea-
tures (psycho-acoustic, spectral or temporal) instead of only
MFCC coefficients.
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