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ABSTRACT

Many audio synthesis techniques have been successful in
reproducing the sounds of musical instruments. Several
of these techniques require parameters calibration. How-
ever, this task can be difficult and time-consuming espe-
cially when there is not intuitive correspondence between
a parameter value and the change in the produced sound.
Searching the parameter space for a given synthesis tech-
nique is, therefore, a task more naturally suited to an auto-
matic optimization scheme.

Genetic algorithms (GA) have been used rather exten-
sively for this purpose, and in particular for calibrating
Classic FM (ClassicFM) synthesis to mimic recorded har-
monic sounds. In this work, we use GA to further explore
its modified counterpart, Modified FM (ModFM), which
has not been used as widely, and its ability to produce
musical sounds not as fully explored. We completely au-
tomize the calibration of a ModFM synthesis model for the
reconstruction of harmonic instrument tones using GA. In
this algorithm, we refine parameters and operators such
as crossover probability or mutation operator for closer
match. As an evaluation, we show that GA system auto-
matically generates harmonic musical instrument sounds
closely matching the target recordings, a match compara-
ble to the application of GA to ClassicFM synthesis.

1. INTRODUCTION

Replicating the sounds of musical instruments using para-
metric synthesis techniques is a problem frequently ad-
dressed in the field of computer music. The success of
any particular synthesis algorithm, is dependent, in part, on
the selection of suitable controls and synthesis parameters.
Manually estimating parameters for a particular synthesis
algorithm can be difficult and time consuming, especially
if there is no intuitive relationship between the parameter
values and the produced sound. Thus, diverse optimization
methods have been used for automatic calibration, such as
Particle Swarm [1], HMM [2], Neural Nets [3], Cellular
Automata [4], Genetic Algorithms [5], etc.

It has been suggested that Genetic Algorithms (GA) are
well suited to matching musical instrument tones (as mea-
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sured by the error in feature vector space) [3]. Indeed, GA
have been used extensively for estimating the parameters
of synthesis techniques such as additive synthesis [6], sub-
tractive synthesis [3], granular synthesis [7] or frequency
modulation (FM) synthesis [8].

The use of GA for ClassicFM parameter estimation, has
not yet been extended to its modified counterpart, Mod-
ified FM (ModFM), a modulation technique derived from
ClassicFM. ModFM is built on Hutchins’ 1975 work [9] on
exponential FM with analog signals. In 1977, Moorer [10]
introduced the ModFM formula presented as one of the
more practical of various well-known closed-form formu-
las. It is not before 2010 with Lazzarini [11] that this tech-
nique was reintroduced. While ModFM is not considered
to be a substitute for ClassicFM, it can offer an alterna-
tive when ClassicFM does not provide the desired effect.
In this work, we further explore this less-known synthesis
technique, and present a method, using GA, to match har-
monic tones produced by musical instruments. An evalua-
tion of simulated and recorded target sounds is presented in
Section 5. As our system is also applicable to ClassicFM,
we also include a comparison of the system’s performances
in both synthesis techniques. Sound examples are available
for public audition [12].

2. CLASSIC FM SYNTHESIS AND AUTOMATIC
CALIBRATION

FM synthesis, pioneered by Chowning, is a technique whereby
the frequency of an carrier oscillator is altered, or “dis-
torted”, in accordance with the amplitude of a modulating
signal [13]. As shown in Chowning’s original paper, and
in much of the literature that followed, FM synthesis made
it possible to create complex spectra with only a limited
number of oscillators. Chowning’s work included several
hand-tailored parameter settings for various instruments as
well as parameters appropriate to design woodwind, brass,
vocal, and percussive instruments based on simulating the
properties of those instruments. The estimation of FM pa-
rameters for which “recipes” did not exist however, was
more difficult for users of the technique.

Morrill’s study of FM trumpet tones [14] followed Chown-
ing’s work in trying to determine parameters based on de-
tailed knowledge of the trumpet. Morrill presented single
and double carrier architectures for the trumpet and clearly
identified the limitations of single carrier architecture. He
also pointed out the difficulty in predicting the spectral out-
put of the double carrier architecture. Since then, more

SMC2012-387

mailto:mmacret@sfu.ca
mailto:tamaras@sfu.ca
mailto:pasquier@sfu.ca
http://creativecommons.org/licenses/by/3.0/


complex ClassicFM architectures involving several carri-
ers and modulators have been developed, such as nested
modulator FM, double FM or feedback FM synthesis [5].
Though these algorithms have made it possible to synthe-
size more complex sounds, the increased complexity have
made the search of parameters even more difficult.

Justice [15] was one of the first to propose a method to
determine these parameters. He introduced a Hilbert trans-
form procedure to decompose a signal into parameters for a
single carrier FM architecture. The procedure attempted to
produce a matched FM signal close to the original, leaving
the user to tweak the parameters as desired. However, Jus-
tice matched FM-generated signals and not those of acous-
tic musical instruments.

Later, Beauchamp [16] developed a frequency-domain
method to find FM parameters as part of a larger study on
brightness matching. He used a single carrier-modulator
pair with a centroid-controlled modulation index to match
the time-varying spectral centroid of the original signal.
Though the level of control was too coarse to provide a
good perceptual match, the technique was notable in its
attempt to perform an automated spectral match. Along
the same lines, Delprat et al. used a wavelet analysis and a
Gabor transform to find spectral trajectories to estimate the
modulation indexes [17]. However, their technique didn’t
automate the process of searching for the complete set of
synthesis parameters; it only focussed on modulation in-
dexes.

Horner et al. were one of the first to attempt to do param-
eter optimization for more complex FM synthesis architec-
ture [8]. They used GA to optimize the modulation indices
and carrier and modulator frequencies for various numbers
of carriers. The relative spectral error between the original
and matched spectra served as the fitness function guiding
the GA’s search to the best FM parameters. Most matched
instruments required three to five carriers for a good match.
Horner [18] also applied GA to the other known FM syn-
thesis architectures such as nested modulator FM matching
and feedback FM synthesis.

With the increasing popularity of sampling (largely due to
its ability to produce more realistic acoustic sound and the
decreasing cost of storage), research and applications of
FM declined gradually only to be rekindled more recently:
Lazzaro showed how a single mathematical function can
model a subtractive synthesis technique [19] and there-
fore be considered as a modulation technique alongside
FM synthesis. He also introduced some novel methods of
formant analysis and synthesis [20] using ModFM [11], a
modified version of ClassicFM.

3. MODIFIED FM SYNTHESIS

The general equation for a one-carrier one-modulator FM
synthesis is given by

xFM (t) = cos (ωc + I sin(ωmt+ φm) + φc)

=
∞∑

n=−∞
Jn(z) cos[ωct+ n(ωmt+ φm) + φc]

(1)

where I is the index of modulation, ωc and ωm are the car-
rier and modulator angular frequencies, φc and φm are the
carrier and modulator phases, and Jn is the Bessel function
of the first kind of order n, given by

Jn(z) =
∞∑

m=0

(−1)m (I/2)n+2m

m!(m+ n)!
(2)

The ModFM technique can be derived from ClassicFM by
making small modifications to (1). By appropriately set-
ting the carrier and modulator phases, we obtain

cos[ωc + I cos(ωmt)]] = <{ejωct+jI cos(ωmt)} (3)

and changing the modulation index so that it is purely imag-
inary (by multiplying I by j) yields

x(t) = eIcos(ωmt) cos(ωct), (4)

a variant of FM synthesis employing a purely imaginary in-
dex of modulation and producing a different set of scaling
functions for the FM spectrum:

x(t) = B0(I)cos(ωct) +
∞∑

n=1

Bn(I)(cos(ωct− nωmt) +

cos(ωct+ nωmt)),
(5)

where Bn is the modified Bessel function of order n,

Bn(I) =
∞∑

m=0

(I/2)n+2m

m!(m+ n)!
, (6)

which, unlike Jn, is a unipolar signal: Bn+1(k) < Bn(k).
If FM synthesis is seen as a combination of sinusoids ring-
modulated by real sinusoidal waveshaper signals, ModFM
is then based on a sinusoid ring-modulated by a complex
exponential waveshaper signal.

Figure 1. Comparison between ModFM (a) and Clas-
sicFM (b) spectra for I = 5 and ωc

ωm
= 1
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Figure 1 shows a comparison between ModFM and Clas-
sicFM spectra, produced with the same parameters. It can
be seen that the major differences are in ModFM’s mono-
tonically decreasing spectrum. Moreover, the absence of
phase-reversed partials may allow for a more predictable
result when combining several ModFM carriers.

3.1 ModFM synthesis properties

ModFM synthesis instrument design takes advantage of
the various concepts and ideas associated with ClassicFM
synthesis. In particular we observe the following princi-
ples:

1. The carrier-to-modulator frequency ratio fc

fm
will de-

termine the harmonicity of the spectrum and its fun-
damental frequency, if any.

2. If fc

fm
can be represented as N1

N2
, where N1

N2
are small

integers with no common factor, the spectrum is har-
monic and we have f0 = fc

N1
= fm

N2
. When N1

N2
is

neither rational nor small, the spectrum will be in-
harmonic.

3. If N2 = 1, the spectrum will contain all harmonics;
when N2 > 1, every N2

th harmonic is missing.

4. For integersN1 andN2, the carrier frequency fc will
always be the N1

th harmonic in the spectrum.

Lazzarini et al., claim that the ClassicFM recipes may
be used successfully when applied to ModFM and in some
cases, resulted in improved synthesis [11]. It is not our aim
here to compare the two techniques, or make any claims of
one being more suitable than the other. Rather, we would
like to further explore ModFM by applying a GA to bet-
ter estimate synthesis parameters, and further explore its
ability to produce musical instrument sounds.

4. PARAMETER ESTIMATION USING GENETIC
ALGORITHMS

Genetic Algorithms (GA) were first introduced by Hol-
land [21] and have since been applied to a wide variety
of problems from electric circuit design [22] to music im-
provisation [23]. In a GA, a population of strings called
chromosomes, which encode candidate solutions (individ-
uals) to an optimization problem, evolves toward better
solutions. The evolution usually starts with a first gener-
ation of randomly generated individuals. At each gener-
ation, the fitness of every individual in the population is
evaluated. Multiple individuals are then stochastically se-
lected based on their fitness from the current population,
and modified with genetic operators to form a new popula-
tion. Genetic operators could be cross-over, reproduction
or mutation operators. The new population is finally used
in the next iteration of the algorithm. Commonly, the algo-
rithm terminates when either a maximum number of gen-
erations has been produced, or a satisfactory fitness level
has been reached. If the algorithm has terminated due to
a maximum number of generations, a satisfactory solution
may or may not have been reached. Figure 2 illustrates the
principle of this family of algorithms.

Figure 2. GA algorithm principles

4.1 System design

Given an harmonic target sound, our system has been de-
signed to converge to the most similar ModFM synthesized
sound. The process is completely automatic and only re-
quires two inputs: an harmonic target sound and the num-
ber of carriers to use in the ModFM synthesis architecture
(see Figure 3). As ModFM and ClassicFM share the same
theoretical foundation, the design of our system has been
inspired by Horner’s work [8] (who successfully applied
GA to ClassicFM) with slight differences being:

• use of an automatic fundamental frequency detec-
tion algorithm by the fitness function,

• an amplitude envelope estimation and smoothing for
the carrier,

• a limit to the number of harmonics used by the op-
timization (harmonics must have sufficiently signif-
icant amplitude compared to the fundamental),

• a refined GA which used more efficient and adapted
mutation operator and refined genetic parameters,

Figure 3. ModFM architecture
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Figure 4. System overview. Nharm: number of harmonics taking into account; Nw: number of analysis windows; Nc:
number of carriers; f0: target fundamental frequency; SC: Stopping Criteria; S: Selection operator;M : Mutation operator;
C: Crossover operator

• and most notably, the use of the ModFM synthesis
model in lieu of ClassicFM.

4.2 ModFM synthesis model

As in previous research [8, 11, 13, 14], we use a synthesis
model consisting of a single modulator and multiple paral-
lel carriers, as shown in Figure 3. Each carrier has the same
modulation frequency fm but a different carrier frequency
fci and modulation index Ii. An envelopWi(t), which can
take negative values, is applied to each carrier.

In our ModFM model, the modulation indices are not
time-varying. Though time-varying modulation indices cause
a time-varying presence of harmonics, a spectral character-
istic of sounds produced by acoustic instruments, we focus
on the steady-state for matching purposes.

As we are only dealing with harmonic target sounds, there
is a constraint placed on the carrier frequencies to be inte-
ger multiples of the modulation frequency. This constraint
makes it possible to take advantage of the properties of
ModFM synthesis listed in Section 3.1.

To ensure spectral matching between synthesis and target
sounds, the modulating frequency fm is set to the target
fundamental frequency f0. The parameters which are op-
timized for this ModFM model are, therefore, the modu-
lation indices, carrier frequencies and carriers envelops of
each of the carriers.

4.3 Pre-analysis

The first step in our system is a pre-analysis of the target
sound (see Step 1 in Figure 4). A Fourier transform is per-
formed on the ith window analysis and the magnitudes of
the Nharm first harmonics are extracted and stored in a
vector Ti. This process is iterated on the whole duration of

the sound to get the matrix T containing the magnitudes
of the Nharm first harmonics on each window analysis.
This matrix is used as the optimization objective. An other
Fourier transform is performed on the steady-state segment
of the sound to extract the fundamental frequency. Table 1
gives the parameters used to perform each short spectral
analysis in our system.

4.4 Applying GA

The next step is the parameter optimization using a GA
(see Step 2 in Figure 4).

4.4.1 Population and chromosomes

Step 3 in in Figure 4 shows the populations which are
evolved during each generation. The parameters to op-
timize in our system are the couples: (carrier frequency,
modulation index) for each carrier (see Figure 3). These
parameters are represented by a chromosome, shown in
Step 4 in Figure 4. Integers k1,..,kNc

are multipliers for
the carrier frequencies (fc(i) = ki ∗fm), and I1, .., INc

are
the fixed modulation indexes and are real-valued parame-
ters. To limit the complexity of the search, we constrain the
multipliers for the carrier frequencies to the interval [0, 10]
and the modulation indices to the interval [0, 20]. These
restrictions are compatible with both Lazzarini’s recom-
mendations [11] about parameters calibration in ModFM
and ClassicFM.

4.4.2 Evaluation: fitness score

Each chromosome is evaluated. The first step is generating
the carrier signals using the couples: (carrier frequency,
modulation) in the modFM architecture (see Step 5 in Fig-
ure 4). A Fourier transform is performed on the ith window
analysis and the magnitudes of the Nharm first harmonics
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are extracted for each carrier and stored in the matrix Ai.
Aik,l

is the magnitude of lth harmonic of the kth carrier on
the ith analysis window. The equation

Ai

 Wi,1

...
Wi,Nc

 = Ti

is then solved with the least squared regression method,
a classic method for finding an approximate solution to
an overdetermined equation system (see Step 6). Vector
Wi represents the coefficients to be applied to each car-
rier for the window i to obtain the closest fit to the tar-
get harmonic magnitudes. As we are using 50 % overlap-
ping analysis windows, for each half time window, we get
two coefficients. To reconstruct the carriers envelopes, the
mean of these coefficients is taken. This process is iterated
on the whole duration of the sound and at the end, pro-
duces W , the matrix whose rows represent the envelopes
to apply to the carrier signals. Finally, the fitness score for
the chromosome is the accumulated approximation error
in the least square regression method. This evaluation is
performed on the whole population of chromosomes (see
Step 3 in Figure 4).

4.4.3 Selection strategy

Once every chromosome has been evaluated, if none of
the stopping criteria has been reached (see Section 4.4.5),
a new generation is generated. The Nelite best chromo-
somes are kept and the rest of the population is gener-
ated with crossover or mutation on selected chromosomes
(see section 4.4.4). These chromosomes are selected using
the binary tournament selection. In this type of selection,
two chromosomes are selected randomly in the population,
their fitnesses are compared and the best is selected.

4.4.4 Genetic operators

A single crossover point on both of the two selected chro-
mosomes is selected. All parameters beyond that point
in the chromosome are swapped between the two selected
chromosomes. The resulting chromosomes are used in the
new generation. The proportion of chromosomes gener-
ated by crossover is given in Table 2.

Gaussian mutation is used in this system. A random num-
ber from a gaussian distribution is added to each parameter
of the chromosome. This gaussian distribution is centered
on the middle of the parameter definition interval and its
standard deviation decreases when the number of genera-
tions is increasing. This dynamic standard deviation makes
it possible to have a broad exploration of the parameter

Analysis window size 10 ms
Overlapping 5 ms
Zero padding factor 4
Spectral resolution 20 Hz
Number of harmonics Nharm 10

Table 1. Parameters for the short spectral analysis

Population 100
Max Generation Ngen 300
Stopping criteria SC weighted change in the

fitness < 10−10

over 50 generations
Selection operator S binary tournament selection
Elite children Nelite 2
Mutation operator M gaussian
Crossover operator C 1-point crossover
Crossover proportion 80%

Table 2. Parameters for the GA

space at the beginning of the evolution and to fine tune the
parameters at the end of the evolution.

The initial standard deviation is given by v(2)−v(1) with
v(2) the upper bound of the parameter definition interval
and v(1) the lower bound of the parameter definition inter-
val. The standard deviation at the kth generation is given
by

σk = σk−1(1−
k

Ngen
), (7)

where σk is the standard deviation at generation k and
Ngen is the maximum number of generations (see Table 2).

4.4.5 Stopping criteria

The optimization process terminates if the system reaches
the 300th generation or the weighted change in the fitness,
given by

δn =
N∑

i=1

(
1
2
)N−i(fn+1−i − fn−k), (8)

is less than 10−10 over 50 generations. Equation 8 is the
weighted change at generation n, fk is the best fitness score
at generation k, N = 50 if n ≥ 50 otherwise N = n.

4.4.6 Sound reconstruction

The output of the GA is the best chromosome and a set
of envelopes for each carriers (see Step 7). The carrier
signals are generated using the parameters contained in the
best chromosome. The envelopes are smoothed using a low
pass filter (cut-off frequency : 22 Hz) before being applied
to the carriers to avoid clicking phenomena. Finally the
enveloped carriers are added to get the synthesized sound
(see Figure 3). We use a sampling frequency equals to
44100 Hz and 16 bits encoding.

5. SYSTEM EVALUATION AND RESULTS

5.1 Experiment: Simulated sounds

A preliminary experiment was intended to test the conver-
gence of our system. Sounds produced using ModFM were
used as target sounds, so we would know there would be a
match that could be found by “reverse engineering”.

Three experiments were conducted: E1, E2 and E3, using
2, 4 and 6 carrier architecture, respectively. The param-
eters (envelops and synthesis parameters) were generated
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Figure 5. Harmonics for trumpet and viola sounds (ModFM)

randomly. For each experiment, the system was run 4 times
with, each time, different parameters for the target sounds.
The results can be consulted on our website [12].

Our system converges very quickly toward the target sound.
One interesting result, however, is that in some cases our
system finds a set of parameters different from those used
to produce the target, but nevertheless leading to a sound
that is a very close match. Indeed, as different carriers are
combined and envelopes are applied, there could be redun-
dancy in the space of synthesizable sounds. This could
prove useful since a user could change the parameter val-
ues around those optimized and explore the surroundings
of the sound. If, for a given target sound, we can get sev-
eral sets of optimized parameters, it would give us several
surroundings to explore and we can expect that they would
sound different.

5.2 Experiment: Recorded sounds

For our second experiment, we use instrument sounds recorded
in an anechoic chamber from the MIS database [24]. Each
sound is approximately 2 seconds long. The sound set in-
cludes the 13 following instruments: alto sax, bass, bas-
soon, clarinet, cello, flute, horn, oboe, trombone, trumpet,
tuba, viola and violin. For each sound, the 3 experiments,
E1, E2 and E3 were performed. The results can be con-
sulted on our website [12].

5.3 Comparison between ClassicFM and ModFM

We ran the same experiments using ClassicFM to compare
the performances of our system to optimize ClassicFM and
ModFM. Nothing in our system is specific to ModFM.

The fitness function, the analysis parameters and the ge-
netic operators are generic and can also be applied to Clas-
sicFM. The specifications for the ClassicFM implementa-
tion are the same that the ones presented in Section 4.1 ex-
cept the ModFM carriers/modulators that are now replaced
by those of ClassicFM. We followed the same experimen-
tal protocol that is described in Section 5.2. A comparison
between the results of the two experiments and is available
on our website [12].

6. DISCUSSION

Table 3 gives the distribution of the fitness and of the num-
ber of generations required to converge. The GA is con-
verging about 13 % faster on average using ModFM than
ClassicFM for a loss of 1% on average in fitness. It would
be natural to think that the more carriers we optimize, the
longer the system takes to converge but when we look at
the results, it is not always the case (oboe, tuba, clarinet,
etc). Results for the flute and the sax appear to be outliers
for both synthesis methods as the GA doesn’t converge or
converge toward a high fitness value. This may be a result
of the limited synthesis architecture being used. The fitness

Param. ClassicFM ModFM
µ SD µ SD

Fitness 51.94 77.96 52.60 87.52
Gen. to conv. 99.24 69.24 87.60 42.57

Table 3. Number of generations needed to converge and
fitness distribution
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Figure 6. Synthesis parameter distribution

score, which is the approximate error for the harmonics, is
neither an absolute nor perceptual measure and varies be-
tween the different target sounds (see SD in Table 3). For
example, the best synthesized sound for a Viola sounds as
good as the one for the trombone, but their respective fit-
ness scores are very different (Viola best fitness: 24.22 and
Trombone best fitness: 117.60).

Overall, sounds generated with ModFM sound less bright
than those generated with ClassicFM. Nevertheless, the
best fitness score is higher for ModFM, 30 times over 45
experiments. When their spectrograms are compared for
the same target sound, we observe more high frequencies
in the ClassicFM than in the ModFM, likely due to ModFM
having a quick spectral decay (see Figure 1). In both cases,
the sound envelopes are well approximated.

Figure 6 gives the distribution of the optimized synthesis
parameters for the ModFM and ClassicFM implementa-
tion. Notice that the multiplier for the carrier frequencies,
k, has the same distribution for ClassicFM and ModFM.
In our architecture, k directly acts on the harmonic distri-
bution of the spectrum. As we use the same set of target
sounds for the evaluation of both systems, it seems nat-
ural to get the same k distribution, since ClassicFM and
ModFM share the same spectral properties listed in Sec-
tion 3.1. The values of k are concentrated around the value
2 and don’t take on the rest of the possible values. One
explanation can be that the target sounds are tones ranging
from B to C and don’t require high values of k. On the
other hand, optimized modulation indices I are also low
and very concentrated, around 50% higher for ClassicFM
than for ModFM, which confirms Lazzarini’s findings [11].

When we look at the carrier envelopes, we can discern
two interesting cases. The first case is when these are all
positives and look like the target tone envelop (see Trumpet
2 carriers or Piano 4 carriers [12]). Each carrier seems to
contribute to the final tone in term of spectrum. The second
case is when some envelopes are positives and look like
the target tone envelop and some other are negative and
look like the reverse of the target tone envelop (see Flute 4
carriers or Clarinet 4 carriers [12]). The negative envelops
seem to counterbalance the effect of the positive ones to
match the target spectrum.

Figure 5 shows the harmonics matching with 2, 4 and 6
carriers using ModFM for the trumpet and the viola. A

Figure 7. Target and best candidate spectra for viola and
trumpet with 4 carriers (ModFM)

comparison between the target spectrogram and the best
synthetic spectrogram for these two instruments with 4 car-
riers is given by the Figure 7. For both Viola and Trumpet,
the first three harmonics are well approximated with 2 car-
riers. More carriers are required to match the following
harmonics. With 4 carriers, the Trumpet parameter opti-
mization seems to reach a plateau and adding 2 more car-
riers doesn’t seem to improve subsequently the estimation.
It is different for the Viola, going from 4 carriers to 6 car-
riers makes possible to finally match the 9th and 10th har-
monics. If we look at the overall spectrograms of these
two sounds, we can see that unwanted high frequencies
are present in the synthetic sound. It might come from
our limitation to only look at the 10 first harmonics but it
might also be a limitation of ModFM synthesis. Indeed,
Lazzarini pointed out that instrument designers willing to
use ModFM should be concerned with avoiding aliasing
when using high fundamental frequencies [11].

7. CONCLUSION AND FUTURE WORK

We have refined a system to optimize the parameters in
a ModFM synthesis model to reproduce a given target in-
strument tone. This system is based on a pre-analysis of the
target sound, matching through a genetic algorithm and re-
construction of the tone using ModFM synthesis. A study
was conducted with various instruments and our results
were compared. An application for parameter matching
for a commercial synthesizer by Teenage Engineering [25]
is actually under development.

We successfully use a genetic algorithm to help find the
right parameters using ModFM as a synthesis technique to
match a specific instrument tone. The comparative study
also shows that GA gives generality and efficiency to pa-
rameter calibration as neither our fitness function nor other
genetic parameters have to be modified when used with
ModFM or ClassicFM. Finally, if we remove the harmonic-
ity constraint on the target sound and on the ModFM syn-
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thesis architecture, it seems possible to use GA and a dif-
ferent fitness function to explore the potential of ModFM
synthesis to resynthesize inharmonic sounds.
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