
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011 229

A Generic Approach to Challenge Modeling for the
Procedural Creation of Video Game Levels

Nathan Sorenson, Philippe Pasquier, and Steve DiPaola

Abstract—This paper presents an approach to automatic video
game level design consisting of a computational model of player
enjoyment and a generative system based on evolutionary com-
puting. Themodel estimates the entertainment value of game levels
according to the presence of “rhythm groups,” which are defined
as alternating periods of high and low challenge. The generative
system represents a novel combination of genetic algorithms (GAs)
and constraint satisfaction (CS) methods and uses the model as a
fitness function for the generation of fun levels for two different
games. This top–down approach improves upon typical bottom–up
techniques in providing semantically meaningful parameters such
as difficulty and player skill, in giving human designers consider-
able control over the output of the generative system, and in of-
fering the ability to create levels for different types of games.

Index Terms—Challenge modeling, fun, player enjoyment, pro-
cedural content creation, video games.

I. INTRODUCTION

A S video games exhibit progressively expansive game
environments, there has been a growing interest in

employing generative computational algorithms to mitigate
the cost of authoring game content [1]. Broadly referred to as
procedural content generation, these techniques can be seen
in early games such as Rogue [2] and Nethack [3], as well as
more recent games such as Far Cry 2 [4]. These computational
techniques promise to reduce the involvement of a human
designer, thereby enabling smaller development teams to create
much more content than would otherwise be possible and,
because algorithmically generated content is not as fixed as
content authored by hand, create content that is more readily
adapted to the unique preferences of individual players.
This paper presents a procedural content generation system

that is able to create game environments (levels) for a variety
of games. Our system differs from existing systems in its ad-
herence to a top–down approach, as opposed to a bottom–up,
rule-based approach. These bottom–up systems typically create
levels through an iterative execution of a number of production
rules or through an ad hoc assortment of deeply nested condi-
tional branches and lengthy switch statements with no princi-

Manuscript received November 01, 2010; revised March 09, 2011; accepted
June 20, 2011. Date of publication July 07, 2011; date of current version
September 14, 2011. This work was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC).
N. Sorenson is with the School of Interactive Arts and Technology, Simon

Fraser University, Vancouver, BC V5N4L3 Canada (e-mail: nds6@sfu.ca).
P. Pasquier and S. DiPaola are with the School of Interactive Arts and Tech-

nology, Simon Fraser University, Surrey, BC V3A0A3 Canada.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCIAIG.2011.2161310

pled, overarching design.1 This lack of modularity contributes
to their reputation for being difficult to debug [6]. As well,
their idiosyncratic design ties these generative techniques to a
single game; it is not straightforward to extract generalizable
functionality from the highly specific procedural code. Finally,
bottom–up approaches often provide little artistic control over
the final output.
The present work adheres to a top–down orientation by

adopting an evolutionary computation approach. Level designs
are considered to be individuals in a population and levels of
high-quality pass on their characteristic genetic information to
future generations. Quality is determined by high-level design
goals specified as a fitness function. This fitness function
operates solely on the final generated output and is ignorant of
the specific manner in which the content is generated, allowing
for much more generality than bottom–up approaches.
We present, first, our model of player enjoyment, which

serves as the foundation for the rest of the system. We describe
the scope of the model, justify its design by drawing from
video game research as well as analysis of existing commercial
game levels. We evaluate this model in its ability to identify
commercial-quality levels among arbitrarily generated levels.
We then show how this model is used as a fitness function in
an evolutionary system. The system is applied to two different
game contexts, demonstrating its general applicability. We
conclude with discussion of the benefits of this approach and
discuss future work.

A. Previous Work

1) Video Game Generative Systems: Procedural content
creation is an active area of research, and many different
approaches exist. A particularly ambitious project has been
the automatic generation of entire games. Browne [7] employs
genetic algorithms (GAs) to construct combinatorial abstract
games similar to Chess and Go. He successfully produces
entertaining games using a fitness function that consists of a
weighted sum of 57 design criteria, drawn from a wide array
of sources, including psychology, subjective aesthetics, and
personal communication with game designers. We also use an
evolutionary approach but strive to make the underlying model
more parsimonious and transparent.
Togelius and Schmidhuber also explore the evolution of game

designs [8]. They consider designs to be fun insofar as a neural
net is able to learn to play that game, arguing that it is the process
of learning to master a task that ultimately provides pleasure.
However, the effectiveness of this approach could be limited

1Though most commercial titles are closed source, we can see ad hoc,
bottom–up systems in open-source titles such as Freeciv [5] and Nethack [3].

1943-068X/$26.00 © 2011 IEEE

230 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

by the degree to which neural networks are able to mirror the
experience of human players.
Hastings et al. [9] evolve weapons for a space-themed video

game. The fitness of a given weapon design is inferred from the
behavior of the player as the game progresses; if the player uses
a weapon frequently, similar weapons are made available. Con-
versely, if a weapon is left unused, it appears less frequently.
This approach is an example of an interactive fitness function,
where evolution is guided through human choice. Our work dif-
fers as it provides an automatic fitness function which does not
require direct human involvement.
Smith et al. [10] introduce a mixed-initiative design tool for

the creation of 2-D platformer games. Their tool allows cer-
tain portions to be specified by hand, with the rest constructed
according to a rule-based system. This system produces levels
that conform to a rhythm-group structure, with contiguous pe-
riods of challenge interspersed with moments of rest. Although
our work shares the goal of permitting human designers a great
deal of influence over the system’s output, we express rhythm
groups explicitly through an objective model instead of implic-
itly through the behavior of a collection of production rules.
Shaker et al. [11] also generateMario levels to optimize a model
of player enjoyment. Instead of explicitly constructing a min-
imal model with author-adjustable parameters, as is the case
with our work, their model is inferred from player behavior
using a statistical approach; players must explicitly evaluate
how much fun they had during a play session before the model
can predict what future levels will be most enjoyable. As well,
their generative technique is restricted to adjusting four param-
eters of a rule-based random level generator that is specific to
Mario, whereas our generative approach seeks to offer greater
control to level designers in a manner which can be generalized
to different types of games.
2) Characterizations of Fun: Fun is a broad term and any

attempts at a precise definition would certainly require a limita-
tion of scope, as no single statement is likely to encompass the
entire concept. Even restricting the discussion to the domain of
video games does not permit a simple characterization; Hunicke
et al. [12] even argue that the term “fun” should be discarded en-
tirely, as it is too vague to be considered a practical unit of anal-
ysis. They suggest several more precise terms, such as “problem
solving,” “competition,” and “discovery.” Similarly, the works
of Malone [13], Apter [14], and Garneau [15] outline various
major components of fun. Although these taxonomies provide
useful terminology, it is doubtful they allow for deeper analysis
of the nature of fun in video games. While they identify broad
categories of fun often encountered in games, they say little re-
garding precisely what structures and dynamics are responsible
for creating pleasure.
3) Flow: A common thread among analyses of game per-

formance and player enjoyment is the notion of “flow,” as ex-
pounded in the work of Csikszentmihalyi [16]. The psycholog-
ical state of flow is brought about when a number of prerequisite
conditions are satisfied, such as one feeling in control of a situ-
ation, losing awareness of the passage of time, and executing a
task that is neither too easy nor too difficult for one’s skill level.
Flow is characterized by intense focus and heightened task per-
formance and is often referred to as a state of “optimal experi-

ence.” Sweetser and Wyeth have adapted the principles of this
concept into a framework, called “GameFlow” [17] that iden-
tifies properties of game designs which especially facilitate the
creation of a sense of flow.
The importance of flow in understanding certain gaming ex-

periences, particularly the connection between challenge and
fun, is noted by several authors. In A Theory of Fun, Koster
states that “fun is the act of mastering a problem mentally” [18]
and that the process of overcoming difficult tasks is the source
of pleasure in games, whether it is through identifying patterns
in the behavior of enemy characters or developing the muscle-
memory necessary to execute a sequence of button presses in a
fighting game. If the task is too difficult, the player does not ex-
perience a sense of mastery. Conversely, if the task is too easy,
the player does not need to develop any skills to succeed. Salen
and Zimmerman confirm the central role of difficulty in pro-
viding fun experiences, and though they emphasize that flow is
not synonymous with fun, they do claim that challenge and frus-
tration are “essential to game pleasure” [19].
There are definite affinities between the challenge-based di-

mension of flow and the Yerkes–Dodson law [20], which states
that performance reaches its maximum when the arousal felt
during the completion of a task is neither too little, nor too great.
Piselli et al. [21] have shown that this phenomenon is equally
applicable to the context of video games, evenwhen considering
pleasure, instead of task performance, as a function of difficulty;
players have the most fun when presented with challenges that
are difficult, but not impossible to overcome.

II. MODEL OF FUN

One of the central contributions of this work is a computa-
tional model of fun as experienced in challenge-based video
games. This model is based on the notion of rhythm groups
as introduced by Smith et al. [22], which are design structures
consisting of repeating oscillations between periods of high and
low difficulty. The relationship between the degree of challenge
posed by a rhythm group and the resulting fun as experienced by
the player is informed by the Yerkes–Dodson law and aspects
of the concept of flow.
Our previous attempt to model this phenomenon [23] was in-

tended to provide a clear account for the experience of fun as
a result of rhythm groups, and offer meaningful parameters to
allow the model to be adapted to a wide variety of game context
and player abilities. The currently presented model has the same
purpose, but improves on the earlier formulation significantly.
Whereas the previous model could reproduce level structures
that appeared visually similar to those existing in commercial
games, the current model is able to be trained as a classifier
on actual level data, and is able to effectively distinguish be-
tween examples of good and poor level design, providing much
stronger evidence of its effectiveness.

A. Model Scope

Certainly, the notion of fun is a nebulous concept, and the
specification of the model’s characterization of quality requires
particular attention. We emphasize that the purpose of our
rhythm-group model is to serve as a fitness function in a gener-
ative process, evaluating the relative quality of generated levels.

SORENSON et al.: A GENERIC APPROACH TO CHALLENGE MODELING FOR THE PROCEDURAL CREATION OF VIDEO GAME LEVELS 231

Fig. 1. Segments of four of the 28 levels used to inform the design of the model of fun.

Because our goal is not primarily to model a psychological
state of fun, we use the term “fun” in a more pragmatic sense:
as a measure of the quality of a level’s design. According to this
sense of the term, validation for the model does not come from
subjective studies with human participants but, rather, from
observations of the game industry’s classic, enduring examples
of good level design. We do not entirely distance ourselves
from the notion of fun as a pleasurable mental state; certainly, a
level of high quality is ultimately a level which gives pleasure
to the player. However, for our purposes, we assume that the
properties that elicit this state of pleasure are sufficiently mani-
fest in the level designs and that we can, therefore, understand
important qualities of challenge-based fun by restricting our
analysis to the level designs alone. In other words, the model
is considered successful insofar as it is able to attribute high
fitness values to levels which exhibit structures characteristic
of those found in well-designed levels. The important task of
validating this assumption through user studies is reserved for
future work.
Our model of fun, and our generative process as a whole, ap-

plies to challenge-based action games. These are games where
the predominant form of pleasure does not arise from explo-
ration, online social interaction, logical puzzle solving, or nar-
rative, but rather through reflex-based tests of skill. Indeed, there
are so many aspects to the concept of fun in general that it be-
comes necessary to restrict our focus to a single area; we claim
that reflex-based challenge is more amenable to formal analysis
than, for example, narrative or aesthetic pleasure.
To define our scope even more precisely, we are interested

in games in which the challenge is delivered primarily through
the level design. This requirement includes genres such as
platformers and action–adventure games, but notably excludes
genres such as fighting games and sports games. In these games,
the nature of the challenge, and ultimately the fun experienced
by the players, is primarily a function of the skill of the oppo-
nents (artificial or human) or of the rules and controls governing
the game mechanics. The levels of such games serve merely as
an aesthetic backdrop to frame the game and do not serve as
a promising target for automatic generation. This distinction
justifies the use of our model as a direct fitness function for
level evaluation, a notion which Togelius et al. [1] defines in
contrast to simulation-based fitness functions, which depend
on a dynamic observation of actual gameplay to assess quality.

B. Model Design

The model’s purpose is to estimate the amount of fun pro-
vided by a particular level, based on that level’s configuration of

challenge. The model depends on the notion of rhythm groups,
similar to those described by Smith et al. [24], but with impor-
tant distinctions. Whereas Smith et al. describe rhythm groups
in terms of timed sequences of button presses, analogous to
rhythmic beats in musical compositions, we emphasize themore
general notion of oscillating challenge over time.
Our model attributes high values of fun to levels containing

rhythm groups that resemble those found in actual games, and
its ultimate purpose is to evaluate and guide the output of our
generative system. For the model to be deemed useful, it must
reward levels which exhibit a number of important properties
that are noticeably present in real-world levels.
1) Level Test Cases: Twenty-eight levels taken from Super

Mario Bros. were used to inform the design of the model.
These levels were chosen according to the degree to which
their design contributed to the ultimate challenge dynamics of
the game. This criteria excluded “boss levels,” as the difficulty
of these levels is primarily determined by the patterns of move-
ment of the final enemy. Some other levels were excluded, such
as the ones containing a “Cloud Koopa” enemy, who follows
the player, hurling new enemies for the duration of the level.
Underwater levels were also excluded due to their significant
difference from the rest of the game. Excerpts from some of
the 28 chosen levels are shown in Fig. 1.
The levels were reconstructed by Ian Albert from recorded

screen captures of play sessions, which are made available on
his website [25]. We convert these screen captures into a format
more amenable to analysis through computer vision techniques;
the basic sprites corresponding to the various types of blocks
and enemies are identified, and the location and distribution of
each object type is found through template matching. We deter-
mine enemy locations from their sprite coordinates and find hole
locations by detecting gaps in the blocks located at the bottom of
the level. This information is converted into a time-series rep-
resentation of the “challenge events,” a signal that is zero ev-
erywhere, except for unit impulses at the places where enemies
or holes are located. The particular distribution of these chal-
lenge events is what we hypothesize as predominantly affecting
the amount of fun had by players. Examples of some of the re-
sulting time series are shown in Fig. 2.
From examining the 28 test cases, we draw the following gen-

eralizations, which we will later use as evaluative criteria for our
model.
1) Too much continuous difficulty is undesirable. Though
each rhythm group presents the player with a high degree
of challenge, it is not so great as to cause frustration and a
reduced sense of pleasure for the player.

232 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

Fig. 2. Depiction of the challenge events of seven of the 28 levels used to in-
form the design of the model of fun. Horizontal scale is in 16 16 block units.
Note the visible clustering of challenge events into rhythm groups.

2) Rhythm groups are not necessarily strictly periodic. They
certainly exhibit a cyclical pattern; however, there is no ev-
idence that there is a predominant frequency to the ampli-
tude of challenge over time. Levels with variously spaced
rhythm groups should not be penalized.

3) The model should account for players of different skill
levels. The model should not be fragile in the sense that it
applies only to a single, idealized player but should rather
be adaptable to a wide variety of players through the ma-
nipulation of a few, semantically meaningful parameters.

4) Rhythm groups should conform to a reasonable scale on
the order of seconds; it should not be possible for a gener-
ative system to exploit the model with obvious degenerate
constructions, such as levels containing a single rhythm
group lasting for the entire duration of the level. The model
is most useful for the purposes of level generation if it
is sensitive on a small scale and is able to identify even
minute improvements in a level’s layout.

C. Model Formalization

1) Challenge: Because rhythm groups are defined in terms
of challenge dynamics, our model presupposes the existence of
a suitable technique to measure the change of challenge over
time. It is outside the scope of this work to address the notion
of challenge generally; thus, we must assume that the model
is provided with a challenge metric , which returns, for a
given level, the degree of challenge at the time . Certainly, the
manner in which this value is calculated will vary depending on
the game context. For example, with Mario we use a challenge
function that identifies a portion of a level with any given value
of , and associates difficulty values based on the design of the
level at that given point. In particular, a large gap with a small
margin of error for mistakes will be attributed a relatively high
value of difficulty, whereas a large, straight segment with no
enemies will be given a challenge value of zero.
The construction of the challenge metric entails certain sim-

plifications. For one, we must treat challenge as a single dimen-
sional value. We also assume that the challenge metric is always
nonnegative. While the particular values do not matter (all we
are concerned with is relative ordering), we take zero to repre-
sent the lowest possible challenge experienced in the game. We
also depict challenge as a value that can be sampled at a single
point . Sections IV and V provide example formulations for

in the context of two different games and demonstrate the
modeling of challenge as instantaneous impulses, that is, for-
mulating as a sum of Dirac delta functions (unit impulses),
as illustrated in Fig. 3. Finally, we take the value of challenge to

Fig. 3. Illustration of rhythm group in the context of Mario. Vertical arrows
represent the challenging events (holes) as unit impulses, and the curve repre-
sents the amount of accumulated challenge in the time window. Rhythm-group
boundaries are located at points and , because the windowed challenge
temporarily decreases below the threshold . The accumulated challenge in the
entire rhythm group corresponds to the integration of the impulses located be-
tween boundaries and .

represent the difficulty of a certain level segment absolutely, that
is, irrespective of player skill. Thus, if we were to suggest a pos-
sible unit of measure for the challenge metric, these units would
be constant for everyone, not relative to a particular personal ex-
perience of that level. Again, this does not prove to be a problem
as the model provides threshold parameters which account for
the fact that skilled players would be capable of enjoying higher
degrees of challenge than a player with less skill. In other words,
skilled players could be exposed to a higher amount of these hy-
pothetical “challenge units” before becoming frustrated.
It must be emphasized that because is ultimately used

as a component of an automatic fitness function, it needs to be
calculated without any human input; it must be possible to find a
reasonable estimate of a level’s configuration of difficulty over
time simply by analyzing the level’s layout. This is the primary
reason why we restrict our discussion to challenge-based games
in which the difficulty is mostly a function of the level design.
2) Modeling Fun: The determination of a level’s quality

consists of a two-pass process. First, the level is partitioned
into a set of rhythm groups with boundaries located at times

. The identification of rhythm-group boundaries is
governed by a greedy algorithm that identifies periods of suf-
ficiently low challenge, which are identified as periods of re-
laxation. A window of size is shifted along the chal-
lenge function, and positions the boundaries at points where
the total amount of challenge in the window is less than the
threshold . More precisely, boundaries are located at posi-
tions where . After a boundary is as-
sociated at a given point in time, the window does not place any
more boundary points until after it has witnessed a period where
the challenge temporarily exceeds . Otherwise, extended pe-
riods of low challenge would be identified with a dense interval
of infinitely many rhythm groups. Put more simply, the greedy
process only identifies a new period of relaxation until after an
intervening period of challenge has elapsed. A rhythm-group
boundary is always placed at the beginning and end points of a
level, and because the process is greedily run from the begin-
ning to the end, it produces a unique segmentation.
With this segmentation in place, it is possible to identify the

level with a fitness value. A level is rewarded for each rhythm
group that contains the appropriate amount of total accumulated

SORENSON et al.: A GENERIC APPROACH TO CHALLENGE MODELING FOR THE PROCEDURAL CREATION OF VIDEO GAME LEVELS 233

Fig. 4. Fun as a response to increasing anxiety (accumulated challenge)
when , in the context of a single rhythm group. The response is defined
by the function .

challenge, which we refer to as “anxiety,” specified by the upper
threshold . Formally, if the amount of anxiety contained in
rhythm group is given by , then the amount
of fun attributed to the level as a whole is defined by

(1)

D. Model Characteristics

The numerical response of the model is demonstrated in
Fig. 4, which illustrates the amount of fun in a particular rhythm
group as a function of the accumulated challenge in that rhythm
group. Recall that accumulated challenge—that is, challenge
integrated over a period of time—is referred to as “anxiety.”
In other words, where represents the amount of challenge
present at the instantaneous point , represents the total
amount of challenge integrated over the duration of rhythm
group , which constitutes a quantity of anxiety. The rhythm
group attains its maximal fun potential when the amount of
anxiety present is exactly . The fun provided by a rhythm
group decreases if the amount of anxiety experienced in that
group is greater or lesser than this critical point. This function
is evaluated independently for each rhythm group, and the fun
for the entire level is the sum of each independent evaluation.
We define the formula depicted in Fig. 4 in order to mimic

the famous “inverted U” shape described by the Yerkes–Dodson
law [20], which essentially states that task performance is op-
timal if arousal is neither too high nor too low. Piselli et al. [21]
have shown that this phenomenon is equally applicable to the
context of video games, even when considering pleasure as a
function of difficulty instead of task performance. Our model,
then, idealizes this phenomenon within a computational setting,
and applies it at the scale of individual rhythm groups.
To illustrate the effect of using this model to guide a genera-

tive system, we employ the model as a fitness function in a GA
that evolves challenge time series directly, with no reference to
an actual game context. The genotype is a variable-length list
of challenge locations, which corresponds exactly to our repre-
sentation of the 28 levels drawn fromMario. We use typical GA
settings, with crossover at 0.9 and mutation at 0.05, and stop the
evolutionary run when progress has stalled for ten generations.
The results are shown in Fig. 5.

Fig. 5. Challenge time series with high fitness, as induced by the model with
, and . The curve depicts accumulated challenge in each

rhythm group . Notice that the anxiety in each rhythm group attains . (a)
Constant . (b) Varying .

Our model satisfies the four motivating properties outlined in
Section II-B. First, it is evident that the model penalizes levels
with excessively high difficulty values; the reward for a given
rhythm group attains its maximum at the value and decreases
quickly after that threshold has been surpassed. Second, there
is nothing in the formulation that encourages strict periodicity;
fitness is rewarded solely based on the amount of challenge
present in a rhythm group and is not predicated on the rhythm
group conforming to any specific width.
As well, the model can easily and intuitively be adjusted to

account for players of different skill levels. The parameter
corresponds to the skill of the player, and can be raised or low-
ered to create levels with higher or lower levels of difficulty. As
Fig. 5(b) shows, this parameter can even be adjusted over the
course of a single level, providing the designer with the ability
to control the overall arc of challenge at a high level, in this case
creating a level with a very challenging midpoint with easier
portions at the beginning and end. It would similarly be pos-
sible to adjust dynamically in order to raise or lower the lower
bound of anxiety required to trigger rhythm-group boundaries.
Finally, the above model does not lead to degenerate cases,

as rhythm groups that are too long impose a low upper bound
on the total amount of fun that can be attributed to a level. If
a level were to be identified as consisting of a single rhythm
group, then the amount of fun attributed to that level would be,
at most, 1. Any level with more numerous (and smaller) rhythm
groups will certainly be able to exceed that value and be favored
for selection. On the other hand, rhythm groups must be at least
a width of , which places a lower bound on their size. In
this way, these two bounds ensure that rhythm groups exist at a
scale that can allow a level design to be analyzed at a meaningful
resolution—on the order of seconds, not minutes.

E. Learning Parameters

Provided that a suitable challenge metric is defined and
that values are specified for the parameters , , and ,

234 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

the model is able to estimate a level’s entertainment value. How-
ever, it is possible to perform the reverse operation, beginning
with a set of levels of a known entertainment value and working
backward to infer the specific model parameters that reproduce
the observed values. This task is an instance of an expectation
maximization problem, with the goal of finding model parame-
ters that account for an observed set of example levels. By fol-
lowing this procedure, it becomes possible to mimic the partic-
ular challenge characteristics of an existing game; given a set of
levels that are considered to be well designed, the model can be
trained to reward levels with similar challenge configurations.
This could be an effective way to expand the content of a game,
as any automatically generated levels would exhibit the same
difficulty patterns as the human-designed levels.
The inference of the model parameters also serves as a means

of validating the model itself. If certain parameters allow the
rhythm-group model to successfully distinguish between well-
designed and poorly designed levels, it stands to reason that
the model is sensitive to relevant characteristics of high-quality
level design. Indeed, this validation is of critical importance
when asserting the usefulness of analyzing levels in terms of
rhythm groups. We do not currently rely on qualitative, sub-
jective evaluations of fun (such as questionnaires) to evaluate
the model; instead, we can assess the model’s effectiveness by
treating it as a classifier of existing, real-world levels, judging
its performance in the same way many other machine learning
techniques are judged. Furthermore, this approach provides an
avenue of testing themodel independently of any particular gen-
erative context. Evaluating the output of a generative system
that is based on the rhythm-group model does not necessarily
demonstrate that the model, itself, is responsible for the quality
of that output; it could be the case that the generated levels are
fun only because of some felicitous property of the generative
system. However, in evaluating the model in isolation, we can
more confidently defend the use of rhythm groups as a mean-
ingful analytical tool.
1) Classification Results: It proves to be the case that the

model is, indeed, able to successfully distinguish between the
challenge time series of the 28 levels taken from the original
Super Mario Bros. game, which are considered to be examples
of good level design, and 30 time series that were crafted to
represent examples of poor level design. We constructed the
30 negative examples to represent properties that would be
obviously undesirable in well-designed levels, arguing that the
model would certainly need to be able to identify these levels
as poorly designed before it could be seen as effective. In that
sense, this experiment establishes baseline functionality and
serves as a “sanity check” of the model’s usefulness.
Because we have seen that actual levels have no regular pe-

riodicity, we have generated negative examples that do exhibit
a regular, periodic structure. We have 14 negative examples in-
tended to represent levels that are clearly too difficult. Some
contain challenge impulses located 1–3 units apart for the en-
tire duration of the level, while others contain bursts of 20 con-
tiguous challenge impulses located between 20 and 30 units
apart. Similarly, we have 16 examples of levels that would be
too easy, with single challenge impulses separated by 20–30
units of space.

TABLE I
MEAN AND VARIANCE FOR THE TEN OPTIMAL PARAMETER SETTINGS

FOUND THROUGH CROSS VALIDATION

The model can be converted to a classifier through the ad-
dition of an extra parameter , which represents the threshold
of fun above which a level is considered to belong to the class
of well-designed levels. For the sake of convenience, we train
the classifier using the evolutionary system we have in place,
which was, indeed, able to find effective model parameters for
this classification task. We treat model parameters as individ-
uals in a population and define a fixed-length genotype defined
by the tuple . The fitness of a set of param-
eters is given by the proportion of correct classifications of the
training data. Optimal values were routinely found within the
span of a few generations, and evolution was stopped if there
was no fitness improvement after five generations.
The experiment was conducted as a tenfold stratified cross

validation by randomly partitioning the 58 training examples
(consisting of the 28 realMario levels and the 30 hand-designed
negative examples) into ten groups of five or six examples, with
roughly three positive and three negative examples per group.
The model was then trained on each of the ten different groups
formed by removing one of the sets for validation purposes (so
that the same data points were never used for both training and
validation). The model was quite successful at distinguishing
our real levels from the poorly designed levels; with only two
false negatives, it achieved precision score of 1.0 and a recall
score of 0.93.
Also encouraging is the fact that the optimal parameters con-

formed to their intuitive roles in the function. As shown by
their mean values in Table I, rhythm groups corresponded to
periods containing an average of seven challenge impulses, and
inspection of the 28 example levels reveals visible clusters of
challenge events containing roughly that many items. It is rea-
sonable that a period of about ten blocks with only a single
hole or enemy (according to and) would constitute a
rhythm-group boundary. In other words, it is a reassuring result
that the parameters which correspond with an intuitive, visual
inspection of actual Mario levels are precisely the parameters
that lead to successful automatic classification under the pro-
posed model.

III. IMPLEMENTATION

The generative process is ultimately a search through the
space of possible designs. The system attempts to find a par-
ticular level that demonstrates a good configuration of rhythm
groups and that possesses, therefore, a high fun value. This sec-
tion goes into more detail regarding the particular techniques
used to traverse this space successfully.

SORENSON et al.: A GENERIC APPROACH TO CHALLENGE MODELING FOR THE PROCEDURAL CREATION OF VIDEO GAME LEVELS 235

At the core of the approach lies a GA, for which each potential
level design is represented by a genetic encoding. We extend the
basic algorithm with new features that help to overcome some
difficulties associated with evolutionary search. Constraint sat-
isfaction (CS) methods are employed to form a hybrid system
that effectively optimizes the value of fun for levels while si-
multaneously observing the strict constraints inherent to level
design.

A. Problem Domain

Level design remains a challenging AI search problem for
two primary reasons. First, it is a task characterized by high di-
mensionality; a single level design in our system contains hun-
dreds of degrees of freedom. GAs are an effective tool when
approaching this kind of problem, as they are well suited to
such high-dimensional search spaces. However, level design
is also a highly constrained task. Level elements must be ar-
ranged in such a way as to ensure that the player is able to tra-
verse the level. For example, in Super Mario Bros, if a platform
was placed too far from a ledge for a player to reach, the en-
tire level would be rendered unplayable. An objective function
would typically associate completely broken levels such as this
with a fitness value of zero. Because a small change in the po-
sitioning of a single element of a level can drastically change
the objective quality of the level, the problem is said to have a
highly discontinuous fitness landscape, suggesting the problem
is poorly suited to an evolutionary approach. In cases where the
constraints between solution elements are critical, CS methods
are more appropriate.
The generative approach presented in this paper is con-

structed to address both concerns simultaneously, and is an
example of a hybrid constraint solver and evolutionary system
[26]. Such systems strive to observe the constraints of the
problem domain while exploring a high-dimensional search
space in order to maximize an objective fitness function.

B. Genetic Representation

The genetic representation of a level is a variable-sized,
unordered set of design elements (DEs). Design elements are
atomic units that combine to form a game level. Intuitively,
DEs represent the components a human level designer would
arrange when manually constructing a level for a game. For
example, a single enemy in Mario is represented as a DE. A
given game will include a number of different types of DEs,
which together express the breadth of elements available to
the game designer. More detailed examples of constructions of
DEs for specific games are offered in Sections IV and V.
Each type of DE is defined by a number of parameters and

is essentially a tuple containing floats, integers, and Booleans
that represent the characteristics of that DE. For example, in
an adventure game, an enemy DE might have two dimensions
representing its horizontal and vertical position, one dimension
representing its strength, and a Boolean dimension determining
if it is armed or unarmed.
1) Genetic Operators: Mutation is accomplished with re-

spect to a single DE. A single mutation operation can either
be the addition of a new random DE to the genotype, the dele-
tion of a DE from the genotype, or the modification of one of

a DE’s constituent property dimensions. A new DE can be cre-
ated by selecting from one of the game’s basic types of DE and
setting its dimensions to random values in their respective do-
mains. Mutation of a DE is achieved by selecting a new value
for a random parameter. If the parameter is a real-valued number
or an integer, the parameter is perturbed to a degree defined by
a Gaussian distribution. If it is an unordered categorical vari-
able (including Boolean parameters), it is set to a new allowable
value with uniform probability. Each DE dimension can also be
associated with a scaling parameter that affects both the scale of
the Gaussian distribution and the variance of the mutation that
is applied to a particular dimension.
The crossover operator is similar to variable-point crossover

but modified slightly to be compatible with our representation.
Standard variable-point crossover is achieved by picking a
random cut point in the two parent genotypes and swapping
two halves of each split parent genotype to create two new off-
spring. Our genotype representation consists of an unordered
set of DEs, and typical crossover operators are defined in
terms of ordered, linear genotypes, so standard variable-point
crossover cannot be applied directly. However, because our
DEs represent substructures with spatial position, we can
impose a linear order by sorting along a spatial dimension.
This approach is applicable to any -dimensional space; every
crossover involves picking a dimension at random, sorting
by that dimension, and behaving exactly as a variable-point
crossover on the now-linear representation. For example, in a
2-D context, the parents will be split by a random horizontal or
vertical plane, and the offspring will be formed by taking all
the DEs that lie to one side of the plane from the first parent, as
well as all the DEs that lie on the other side of the plane from
the other parent.
This approach serves to draw together within the genotype

DEs that represent level structures that are in close proximity,
providing the property known as gene linkage [27]. An impor-
tant aspect of any genetic representation is the strength of the
gene linkage, which determines the efficacy of the crossover op-
eration in preserving useful modular substructures. In the worst
case, when the DEs have an arbitrary ordering, the GA degrades
into regular hill-climbing (albeit with large, random, and dis-
ruptive changes interspersed with smaller mutations). Strong
gene linkage, however, is what enables GAs to naturally pre-
serve high-fitness substructures throughout a population, which
would be otherwise destroyed through small-step mutations.

C. Constraint System

CS methods are added to the typical GA structure in order
to address the challenges of a highly constrained solution space
with a discontinuous fitness landscape. We use CS to repair the
genotypes that are subjected to breaking changes. We use two
distinct forms of CS, which address two particularly relevant
forms of level design constraints. Constraints can be formulated
as simple, local, spatial relations such as “the object must not
overlap the object .” These constraints can be solved with the
“Tier 1” CS system, which immediately alters the genetic rep-
resentation to directly satisfy the constraints. Not all constraints
can be easily expressed in terms of local, spatial relations, how-
ever. For example, the constraint “there must be an unblocked

236 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

path between the points and ” cannot be easily expressed as
a geometric constraint between two elements. These more com-
plex constraints are handed by the “Tier 2” constraint system.
1) Tier 1 System: Tier 1 is an example of a typical con-

straint solving algorithm that employs variable selection, do-
main pruning, and backtracking. We use, specifically, the JaCoP
open source Java constraint solving library [28] as the founda-
tion of our approach and modify it to better suit our use of it as
a reparation step in a GA. JaCoP is particularly useful as it fea-
tures a geometric constraints module which allows many con-
straints typical of spatial arrangements to be straightforwardly
expressed and efficiently solved.
Because of JaCoP’s role as a genotype reparation step in a

larger process, we are concerned with more than simply finding
a set of values that satisfy the problem constraints. We want to
ensure that the reparation process modifies an existing geno-
type as little as possible in its attempt to provide a viable so-
lution. The benefits of this are twofold. First, because the GA
uses the rhythm-group model to evaluate designs, the more we
alter a given level design to satisfy game-specific constraints,
the more likely we are to disrupt the rhythm-group structure and
reduce the effectiveness of the model in producing fun levels.
A second benefit to altering the genotype as little as possible is
the possibility of allowing human designers direct control over
portions of the system’s output. We can use the same machinery
that minimizes genotype modifications to ensure that the system
respects the designer’s adjustments to the level and alters the
level in such a way to minimize disruptions to content made by
human designers.
Our CS problem can then be framed as a search for values for

the DE dimensions that minimize a cost function that represents
how much they are altered. This is achieved by extending the
JaCoP CS library with alternate variable selection and value
selection processes. Constraint solving requires picking both
a variable to alter and a new value for that variable and our
approach is to prioritize the choice of values so as to reduce
the potential negative impact. In other words, if the original
value of a certain DE dimension, as set by the GA, is 3, the
values are chosen in the order of increasing distance, e.g.:

. We do not claim that this approach
always produces the absolute global minimum disruption, but
it is more effective at approaching this goal than an arbitrary
value assignment.
Every individual that can be successfully repaired through the

Tier 1 system is fixed and placed back into the population.
2) Tier 2 System: The Tier 2 system handles individuals that

cannot be repaired through the Tier 1 process, and can satisfy
certain constraints which cannot be easily expressed using the
primitives provided by the JaCoP system. The subsystem, which
is described in earlier work [29], is modeled after the feasible/in-
feasible 2-population GA (FI-2pop), developed by Kimbrough
et al. [30]. The FI-2pop consists of two populations which are
evolved in parallel, one labeled the “feasible population,” which
contains all the individuals that satisfy the constraints of the
problem domain, while the other is referred to as the “infeasible
population,” which contains those individuals that do not satisfy
the constraints. In our case, the feasible population contains all
the levels that satisfy the constraints of the game in question as

well as those individuals that can be repaired by the Tier 1 con-
straint solver so that they do not violate any constraints. The in-
dividuals which cannot be repaired, or which violate constraints
that cannot be expressed in the terms of the Tier 1 subsystem,
are placed in the infeasible population.
Whereas the feasible population is evolved according to our

primary fitness function, that is, by the rhythm-group model
of fun, the infeasible population is evolved according to a
fitness function which seeks only to satisfy the still-violated
constraints. This is done with a measurement of the degree to
which a given level violates the set of constraints. By min-
imizing this function, levels ultimately reach a state where
they violate no constraints, at which point they can be moved
back into the feasible population. Because Tier 2 constraints
are enforced through a fitness function, they can express any
arbitrary, global constraint on a level design; they do not need
to be limited to spatial relationships between individual level
elements. An example of a global property that is difficult to
express in terms of local constraints is connectivity—ensuring
there is a traversable path from the beginning to the end of a
level.

D. Summary

This architecture maintains all the advantages of the
top–down approach. It allows the level design criteria to be
described declaratively, irrespective of the actual generative
implementation. Procedural generative processes are restricted
to the reification of the DEs (through the genotype to pheno-
type mapping process) and our architecture provides a clear
separation between the mechanics of the level creation and
the evaluation process. Furthermore, this system is capable of
respecting the designs provided by human content creators; the
DEs could be provided by a designer through their usual level
design editor and given special status in the system. The GA
treats these DEs as fixed and immutable and does not alter them
under mutation or crossover. Likewise, the CS system gives a
higher weighting to the variables corresponding to the DEs that
are provided by the human designer when altering their values,
preferring to mutate automatically generated DEs provided
by the GA than to change the DEs specifically placed by the
human. Essentially, this amounts to a system that works around
and with a human designer to “fill in the blanks,” upsetting as
little as possible both the guidance of the rhythm-group model
and, more importantly, the designs provided by the human.

IV. MARIO

In this section, we outline a concrete application of the model
and generative framework in the context of an actual game,
namely the 2-D platformer Super Mario Bros. First, we de-
scribe a challenge function for this game in order to apply our
rhythm-group model. We present a way to model this design
task in terms of DEs and constraints, and discuss the results.
The system produces levels that are directly playable. The im-

plementation used is an open source clone of Super Mario Bros.
called Infinite Mario. It is written byMarkus Persson in the Java
language and is currently used in several video game research
problems, including theMario AI Championship, where it func-
tions as a platform for testing the performance of various AI

SORENSON et al.: A GENERIC APPROACH TO CHALLENGE MODELING FOR THE PROCEDURAL CREATION OF VIDEO GAME LEVELS 237

character controllers, learning agents, and generative systems,
such as our own. Infinite Mario implements many elements of
the original game, including Super Mushrooms, Fire Flowers,
Goombas, Koopas, Spiked Koopas, Bullet Bills, and Piranha
Plants. It is not a completely faithful replication, though, as it
does not include some game elements, such asmoving platforms
or the Cloud Koopa character, who hurls Spiked Koopas from
the sky. However, a large proportion of the gameplay is still in-
tact, and, judging by its popularity on online gaming sites such
as NewGrounds [31], where it has been played by over 11 000
people, it can be considered a legitimate representative of the
platformer genre.

A. Challenge Metric

One should recall that the rhythm-group model serves as the
core of the GA, and, since the rhythm-group model is defined
in terms of challenge, a method for estimating the challenge of
a given level is required. In challenge-based games, difficulty
arises from the precision required to execute a properly timed
sequence of button presses. In Mario, difficult segments corre-
spond to the locations where enemies are densely located and
where the platforms are narrow. Easy segments are, conversely,
the areas where there is very little precision required to success-
fully traverse the section. More technically, if we consider the
set of all possible sequences and timings of button presses, a
challenging section can be defined as sections where the ratio
between sequences of button presses that result in successful
traversals to sequences that result in unsuccessful traversals is
relatively small. It is this notion which motivates the metric of
Compton andMateas [32], in which the challenge of a particular
jump is defined as the ratio between the number of trajectories
that traverse the gap to the number of unsuccessful trajectories
which result in falling into the gap. Our challenge metric is sim-
ilar, and is shown in the following equation, where is
the Manhattan distance between the platforms and minus
the sum of the two “landing footprints,” , of both platforms
plus a constant:

(2)

The landing footprint is a measurement of the length of a
platform, bounded to the maximum distance a player can jump

. This measure is important, as there is a much greater
margin of error when jumping to a wide platform than to a
narrow platform, and it is a less challenging maneuver. The con-
stant is added to ensure that this difficulty measure is
nonnegative.
We extend this basic formula to account for the challenge

posed by the enemies in the level. Because all enemies in Super
Mario can be defeated by jumping on, or over them, we can
regard each enemy as a gap in the level. We measure challenge
in the sameway as with platforms, save for an extra constant ,
which is added to account for the fact that since the enemies are
moving, there is a slight increase in difficulty as opposed to a
static hole of the same size. These parameters are all assigned
values through the learning process outlined in Section II-E.

B. Design Elements

A Mario level is a grid of 250 15 block units with a floor
consisting of blocks occupying the entirety of the 14th and 15th
rows of the level array. The beginning and end level points,
which are required by Infinite Mario Bros. to determine the
spawn position and victory criterion, are set to be (0,13) and
(230,13), respectively. Notice that, because levels contain a
floor by default, holes must be created explicitly in the envi-
ronment through DEs.
1) Basic DEs: The system is composed of the following

basic DEs.
• Block(x, y). This DE is a single block, parameterized by its
x and y coordinate.

• Pipe(x, height, piranha). A pipe serves as both a platform
and a possible container of a dangerous piranha plant.

• Hole(x, width). This specifies a hole of a given width in the
ground plane.

• Enemy(x). This specifies an enemy at the given horizontal
location.

• Platform(x, width, height). This specifies a raised platform
of a given width and height.

• Staircase(x, height, direction). Staircases are common
enough to warrant a dedicated DE. The direction specifies
whether the stairs are ascending or descending.

2) Compound DEs: Ten additional DEs are defined, which
are used in conjunction to the basic set. These elements drawn
from common elements seen in both the original Super Mario
Bros. as well as one of its sequels Super Mario World [33], and
represent compound arrangements of the basic DEs.
• Blocks(x, height, width). Several blocks in a horizontal
row.

• Hill(x, width). A “background” hill that can be either
jumped upon or bypassed.

• Hill-with-enemies(x, height, n, type). A Hill with n enemies
of the type variety.

• Cannon(x, height). A cannon fires “Bullet Bill” enemies
toward the player.

• Steps(x, width, height, dir, n). This DE represents when the
ground itself rises or declines (specified by dir) to height
in n distinct steps.

• Enemy-pit(x, width, type, n). This specifies a group of ene-
mies at the given horizontal location, situated in a depres-
sion in the ground.

• Enemy-pit-above(x, width, type, n, left, right). This spec-
ifies a group of enemies at the given horizontal location,
bounded by rocks, pipes, or cannons, as specified by left
and right.

• Enemy-row(x, type, n). This specifies a group of enemies
at the given horizontal location.

• Coin-arc(x, height, n). This specifies a number of coins at
the given horizontal location.

• Impediment(x, type). A high pipe or wall that can only be
mounted by jumping from another pipe, a row of blocks,
or a background hill. This DE constructs both the obstacle
and the helper object needed to cross it.

Though there is certainly additional complexity involved in
specifying more DEs, each element is completely independent

238 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

Fig. 6. Segments from final levels with extended set of DEs. (a) Generation: 151. (b) Generation: 138.

and can therefore be developed and tested independently. As
well, though the number of constraints between DEs could in-
crease exponentially as more are specified, many of the com-
pound DEs are subject to identical constraints. For example,
most of the DEs form a set of elements whose members cannot
overlap with each other. Thus, it is not necessary to manually
specify pairwise constraints between each DE.
3) Constraints: We define, in addition to the DEs, a number

of constraints that express the requirements for a playable In-
finite Mario level. As previously noted, each constraint in our
system can specify a method for penalizing levels proportion-
ally to how greatly they violate the constraint.
• require-exactly(n, type). This constraint specifies the de-
sired number of certain types of design elements to be
present in the levels. As a penalty, it returns the absolute
difference between the counted number of instances of type
and the desired amount n.

• require-at-least(n, type). This function penalizes levels
that contain less than n of a given type, returning 0 if n
type and returning type-n otherwise.

• require-at-most(n, type). This function penalizes levels
that contain more than n of a given type, returning 0 if n
type and returning n-type otherwise.

• require-no-overlap(type , type). This function states
that the specified types are not to overlap in the pheno-
type. It is, therefore, only relevant for design elements that
contain a notion of location and extent. In the present ap-
plication, we specify that pipes, stairs, enemies, and holes
should not overlap one another. As a penalty, the number
of overlapping elements is returned.

• require-overlap(type , type). This function specifies that
type must overlap type , though type need not neces-
sarily overlap type . We use this function to require that
platforms must be positioned above holes. The number of
type elements that do not overlap with a type element is
returned as a penalty.

• traversable(). This function is to ensure that a player can
successfully traverse the level, meaning that there are no
jumps that are too high or too far for the player to reach.
This is determined using a greedy search between level el-
ements. The penalty is the number of elements from which
there is no subsequent platform within a specified range,
that is, the number of places at which a player could get
stuck.

All the previous functions are specified such that a value of
zero reflects a satisfied constraint and a positive value denotes
how severely a constraint is violated. Therefore, any individual
level that is given a score of zero by all of the above functions
is considered a feasible solution and is moved into the feasible
population for further optimization. The feasible population is
evaluated using our generic model of challenge-based fun. We
adapt this model to 2-D platformers by providing a method
for estimating challenge at any given point in a level. This is
done by a function that returns a challenge value for each jump
required between platforms, with difficult jumps being rated
higher, and a set constant for each enemy in the level.
With no pressing concern for efficiency, we choose to set the

mutation rate to 10% of individuals per generation and to gen-
erate the rest via crossover, using tournament selection of size 3.
Finally, following the convention of Kimbrough [30], we limit
the sizes of the infeasible and feasible populations to 50. Our
stopping criterion is reached if the fitness of the levels does not
improve for 20 generations. The evolutionary runs took between
two to ten minutes on a midrange dual-core PC.
Fig. 6 depicts segments from some of the resulting levels.

Figs. 7 and 8 depict levels generated with the model parameter
fixed at 6.0. These levels were the result of contiguous runs of

the system (i.e., they were not singled out according to any sub-
jective criteria). Fig. 9 demonstrates the effect of varying . By
doing so, levels are created such that the most difficult portions
are located where is the highest, in this case, in the center of
the level. However, some challenge is still present throughout
the level, and the player is provided with constant engagement.
This ability to alter the model’s parameters offers designers a
unique, high-level way to influence the system’s output, and il-
lustrates some of the variety of design allowed by the system
and the control that is afforded to the user.
Fig. 10 depicts another avenue for high-level control over the

system output. In this case, a constraint was specified that there
should be no Hole DEs in the level genotypes. The system is
able to produce rhythm-group structures while observing this
externally imposed design requirement. By restricting the pres-
ence of certain level elements in this manner, we can ensure that
levels do not all contain the same proportion of level elements
and can therefore maintain diversity in the system’s output.
Fig. 11 demonstrates the potential for our system to allow for

certain portions of the level to be directly authored by human
designers. A small segment of a level is designed by hand and

SORENSON et al.: A GENERIC APPROACH TO CHALLENGE MODELING FOR THE PROCEDURAL CREATION OF VIDEO GAME LEVELS 239

Fig. 7. Fixed . Generation 270, fitness 11.09.

Fig. 8. Fixed . Generation 365, fitness 12.17.

Fig. 9. Varying . Generation 629, fitness 10.55.

Fig. 10. Fixed , with no Hole DEs permitted. Generation 202, fitness 11.50.

Fig. 11. The evolutionary system adds content surrounding the human-speci-
fied portion. Notice the highly challenging portions on either end of the rela-
tively simple middle section. (a) Hand-specified design. (b) Automatically gen-
erated content added.

converted to its DE representation. This translation is always
possible for Infinite Mario, as every basic level component has
a corresponding DE. This translated portion is fixed in every
genotype of the evolutionary population and cannot be altered
by any crossover or mutation operators. Otherwise, the manu-
ally created portion is internally treated the same as the gen-
erated segment of the level and is subjected to the same con-
straints and fitness function. For this reason, the system is able
to integrate human and artificial designs together in a manner
that exhibits rhythm groups.

C. Mario AI Championship

This system was entered into the 2010 Mario AI Champi-
onship Level Generation Track, which was held at the 2010

IEEE Conference on Computational Intelligence and Games,
Copenhagen, Denmark. Conference participants were invited
to play levels generated by the various systems and to evaluate
them according to how fun they were. The contest was arranged
so that the systems had to produce levels that adhered to cer-
tain compositional requirements. For example, levels might be
required to have four gaps and three Shelled Koopas. This re-
quirement was put in place to discourage cheating through the
use of systems that could merely return levels that were pre-de-
signed by hand. To observe this rule, our system translated the
composition requirements into constraints.
Fifteen participants took part in the event, and our system

placed third out of six. This is an encouraging result, as our
system, guided by a generic fitness function, was able to rank
competitively with systems designed specifically for this par-
ticular game.

D. Discussion

One possible shortcoming of our approach is that the rhythm-
group model cannot express diversity; there is no evolutionary
advantage to producing rhythm groups that contain a mixture of
different elements, as opposed to creating levels consisting of a
single kind of element. For example, it is possible for a level
containing only Koopa enemies to have the same rhythm-group
configuration, and thus, the same fitness value, as a level con-
taining a mixture of enemies and holes. This type of monoto-
nous design does not seem to occur in practice because of the
stochastic nature of the GA. On the other hand, this restricted di-
versity in a level’s design might be considered desirable. In this
case, the constraint system can be used to influence the variety of

240 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

the level designs by enforcing a maximum or minimum amount
of certain game elements. For example, it is common to intro-
duce certain enemies only in later levels of a game; in this case
the designer can set a constraint specifying that levels contain no
DEs of this type. Fig. 10 depicts how this high-level control can
be used to create a level with no holes. This kind of high-level
control can ensure that the system produces levels that do not
resemble each other but instead differ greatly in terms of com-
position and appearance.
Another potential criticism might be placed against the com-

plexity of some of the design elements. Indeed, reifying some
structures, such as staircases, requires an imperative set of con-
struction instructions to be specified. This type of bottom–up,
procedural approach may seem out of place in a framework that
purportedly minimizes such low-level, game-specific code. It is
important to emphasize that though the method to build a stair-
case is, in itself, a bottom–up, rule-based procedure, the instruc-
tions for doing so are parameterized: the overarching system can
manipulate it on a high level by altering its height, width, and
position, in the same manner as any other level element. In this
sense, each DE is treated as a black box. This policy ensures that
all the procedural knowledge contained within the DEs is insu-
lated not only from the high-level system, but also from other
DEs; each basic level element can be developed and tested in-
dependently. Ultimately, we do not claim to completely elim-
inate all traces of imperative generative techniques; rather we
recognize that a certain amount of procedural specification is
necessary but restrict the scope of such techniques, and subject
them to a easy manipulation by the high-level system. Com-
plex components can be seamlessly used in conjunction with
the rhythm-group fitness function and constraint solver in ex-
actly the same way as any other DE. This flexibility is not af-
forded by monolithic, rule-based production systems.

V. ZELDA

To support our claims of generality, we present an applica-
tion of the generative system to a different game genre. In this
section, we target game levels that consist of rooms and doors
arranged in a 2-D space and are viewed from an overhead per-
spective, as opposed to a side perspective as was the case in
the Infinite Mario levels. We do not develop the construction
process in as much detail as the previous example; instead of at-
tempting to generate levels of comparable quality to commercial
levels, we focus on generating levels that demonstrate a simple
yet essential aspect of the level design task. The purpose of this
simplification is to focus on the core problem of designing 2-D
levels, as opposed to 1-D designs. It proves significantly more
difficult to generate levels for this domain, but the fact that our
approach is still able to efficiently create feasible solutions that
exhibit a rhythm-group structure illustrates both our system’s
generality and its promise as a practically usable technique.

A. Game Background

Zelda is an action-adventure series developed and produced
by Nintendo, which centers on the adventures of Link in the
kingdom of Hyrule. In the course of a typical Zelda game, Link
must successfully overcome the challenges of several dungeons.

Each dungeon adheres to a recognizable pattern and consists of
an arrangement of rooms filled with enemies, collectible items,
and puzzles. For our purposes, we consider the top–down, 2-D
gameplay characteristic of the earlier Zelda games, most specif-
ically the original game: The Legend of Zelda [34]. Because
finding an optimized arrangement of rooms is considered a dif-
ficult challenge for heuristic searches, our initial attempts to
model this game involve significant simplifications: at this point
we only attempt to produce dungeon layouts and monster place-
ment and do not consider the puzzles, keys, and other aspects of
the game. However, promising results in the simplified domain
justify further experimentation.

B. Design Elements

The following DEs are sufficient to examine the problem of
2-D room layout as it relates to challenge dynamics.
• Room(x, y, w, h). A room of dimensionw hwith its origin
at the point (x, y).

• Door(x, y). A door located at the point (x, y).
• Enemy(x, y). An enemy located at the point (x, y).

C. Challenge Metric

The challenge function is defined in terms of the enemies the
player faces as they move from room to room. Rooms can be
viewed as sets of the entities they contain, so given a player who
enters Room(t) at time , the challenge at that point is defined as
the number of enemies in that room, or, more formally,

Room(t) .
This formulation inherently presupposes that the player’s

path through the rooms is fixed and that Room(t) represents
a single value for each point . We pick the shortest path
movement between the entrance point and the exit point as
the canonical path of the player through a given level. The
entrance and exit points are explicitly defined before evolution.
Certainly, this is a large simplification of the behavior a human
would actually exhibit when moving through a complex virtual
environment. However, our choice of shortest path can be jus-
tified by ensuring that the levels contain only a single, unique
sequence of connected rooms from start to finish. In levels such
as these, any path which does not double-back on itself will
be the shortest path. It proves to be simple to ensure that the
generated levels contain no multiple paths or dead-ends and
thus adhere to this linear topology.

D. Constraints

The Tier 1 constraints that can be solved in terms of a CS
formulation, are as follows.
• Room location and dimension values must be multiples of
30. This constraint is equivalent to snapping the rooms to
a coarse grid with cell sizes of 30 units, which simplifies
detecting the property of room adjacency.

• Doors must exist on room edges. This constraint ensures
doors do not exist, for example, in the center of a room.
Enforcing this constraint involves snapping each door to
its nearest wall segment.

• No overlap between rooms. Enforcing that rooms cannot
intersect one other is solved through the manipulation of
the shape and position of the rooms. This is an example

SORENSON et al.: A GENERIC APPROACH TO CHALLENGE MODELING FOR THE PROCEDURAL CREATION OF VIDEO GAME LEVELS 241

of a 2-D geometric packing problem, which is more dif-
ficult to solve than the 1-D constraints used in the Mario
application. However, the constraint solving library JaCoP
provides geometric extensions that are able to efficiently
solve this type of problem.

There is only a single Tier 2 constraint that cannot be ex-
pressed as a simple CS problem.
• Connected path from the start point to the end point. Two
rooms are considered connected if they share a common
edge and there is a door located on that shared edge.

To guide infeasible levels toward connectivity, we use the
heuristics listed below. The heuristics are listed in order of the
priority they are given when sorting the level designs. In other
words, any level which receives a higher value under heuristic
1 will be given a higher fitness than any individual, irrespec-
tive of their heuristic 2 valuation. Similarly, any individual that
maximizes heuristic 2 will be favored irrespective of heuristic
3. Note that, in this application, it is more convenient to specify
the heuristics such that positive values are desirable, as opposed
to the convention of positive values representing penalties.
• Room on start or end points? This heuristic detects if a
room exists at the beginning and ending locations of the
level, returning 0 if neither is the case, 1 if one point is
covered, and 2 if there is a room on both points.

• Max path length from start and end. This heuristic mea-
sures the maximum distance that can be traveled from the
start point and the end point.

• Max path length from other rooms. This heuristic sums to-
gether the maximum distance that can be traveled starting
from every room in the level, other than the start and end
point.

These heuristics serve to guide the infeasible population to-
ward feasibility. By encouraging the maximum possible travel
distance, the GA favors designs that attempt to connect mul-
tiple rooms together, increasing the probability that a design will
be found that connects the beginning and end points together.
This extra guidance is necessary, due primarily to the signifi-
cant increase in the size of search space that the extra spatial
dimension implies; every DE has two significant dimensions
and instead of just . Furthermore, a typical Mario genotype
had approximately 40 DEs, whereas the Zelda levels we consid-
ered contained between 60 and 100 DEs. These two factors lead
to a drastic increase of dimensionality, resulting in levels that
would not achieve connectivity without some form of heuristic
guidance. In a sense, these heuristics serve as an approximation
of fitness on partial levels; instead of assigning a value of 0 to
every unplayable level, we determine how much of the level is
traversable (by measuring how far one is able to walk from a
given starting point). Therefore, these heuristics are not entirely
ad hoc and unmotivated, but serve as a kind of adaptation of the
fitness function to the case of broken levels.
It should be mentioned that there is no explicit constraint that

enforces the existence of a unique linear path through the level.
Instead, this property is achieved through a postprocessing step.
We can create a minimal genotype by attempting to remove
each gene in turn, and replacing that gene if its removal af-
fects the level’s fitness value. Because we only represent the
player’s idealized movement in the calculation as a single

Fig. 12. Sample generated Zelda designs from two different runs. Small rect-
angles denote doors, crosses denote enemies, and diagonal lines denote start and
end points. Note, in particular, the higher number of generations required to find
feasible designs. (a) Generation: 1142. (b) Generation: 1471.

path, branches and dead-ends cannot possibly contribute any-
thing to the fitness of a level, and are therefore always removed
by this operation. Doors that lead nowhere are also removed
from the genotype for this reason.

E. Results

Because it is difficult to arrive at feasible levels in this
context, care must be taken when selecting the parameters
for the evolutionary algorithm. For generating Mario levels,
standard GA parameters were sufficient to enable reasonable
evolutionary progress. However, these same parameter settings
prove ineffective in the present case. To find useful values,
several evolutionary runs were conducted under a number of
different parameter settings, and the parameters which consis-
tently produced the highest average rate of fitness improvement
were selected. Evolution was conducted with five islands,2

each containing 20 feasible individuals and 20 infeasible in-
dividuals. Crossover was found to be optimal at a rate of 0.7,
with mutation at a probability of 0.03 per gene. There was
elitism of a single individual, and interisland migration was
conducted every 50 generations. The stopping criterion is a
lack of progress in all of the populations for 100 generations,
as it was rare to witness any improvement after this point.
Two resulting levels are depicted in Fig. 12. The rhythm pat-

tern structure is evident, with highly challenging, enemy-filled
rooms separated by empty rooms. It is also obvious that all the
levels satisfy the connectivity constraint; as expected there is
a single, unbroken path between the start and end points. The
evolutionary runs took between 15 and 45 min on a midrange
dual-core PC.
1) Comparison to Mario Results: Though the generated

levels appear simpler in appearance than the generated Mario
levels and the formulation contains fewer DEs and employs a
simpler challenge function, it is, in reality, far more difficult
to generate a feasible level for this context than for Mario.
The combined factors of the higher dimensionality and the

2The island model involves evolving several independent populations in par-
allel with occasional migrations between the populations, increasing the chances
of escaping local minima in the search space. For more background, see [35].

242 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

connectivity constraint render it virtually impossible to produce
a feasible level by chance alone. Indeed, there are a vastly
greater number of possible broken levels than feasible levels;
Compared to the Mario application, where 195 out of 1000
randomly generated levels prove to be feasible with no need
for further CS, the Zelda application produces no feasible
individuals at all from chance alone.
The minimal representation adopted in this context was likely

responsible for the high computational cost of evolving levels.
Level connectivity had to be attained through the use of two
different types of elements (doors and rooms, corresponding to
edges and nodes in graph terminology) aligned in a fragile con-
figuration. These difficulties were not present at all in the case
of Mario, where an empty level (consisting only of the floor,
from beginning to end) was still considered feasible. A Zelda
representation which treated doors as a dimension of a room DE
(for instance, as Boolean flags determining if there are doors on
certain sides of a room) would reduce the number of different
types of elements that would need to be aligned to achieve con-
nectivity, and therefore reduce the search space significantly.
Choices of representation greatly affect the scalability of gener-
ative processes, and future work must consider these ramifica-
tions in more detail.
However, it is not necessarily the number of different DEs and

the complexity of the challenge metric which predominantly in-
fluence the difficulty of generating levels for a given game; it ap-
pears that the nature of the constraints influences the difficulty
of generation to a far greater degree. For this reason, it is prob-
able that more DEs and a more precise challenge metric could
be developed to allow the system to generate more interesting
Zelda levels, so long as the connectivity constraints do not be-
come more difficult to satisfy. There is likely a reasonable flex-
ibility within the design space provided by the existing design
constraints of single-path connectivity. It is even possible that
single-path connectedness is a more fragile, and hence a more
difficult, constraint to satisfy than constraints over multiply con-
nected spaces, and levels that admit multiple paths might prove
to be easier to generate.
In any case, the results of this intentionally simple design con-

text provide evidence that this generative system can be success-
fully applied to contexts quite different than 2-D platformers.
This application is not intended to demonstrate the maximal
amount of detail and complexity that can be produced by the
system (which was demonstrated in the Mario application) but
rather to determine the system’s ability to satisfy difficult design
constraints in a different game genre. Indeed, by using exactly
the same fitness function and genetic operators (with some pa-
rameter adjustments) viable levels were generated in a signifi-
cantly different context while maintaining all the advantages of
the top–down approach: the model offers high-level parameters
which serve to alter the layout of the rooms to provide higher
or lower levels of difficulty, and the system is still able to in-
corporate human-authored content by adapting the output sur-
rounding fixed components specified by a human designer.

VI. FUTURE WORK

Many avenues for future research are readily apparent. Due to
the initial success of the Zelda context, it would seem promising

that a more comprehensive set of DEs, such as the ones defined
for Mario, could lead to levels more closely resembling those
from the actual game. More constraints could be considered to
model the puzzle aspects of the game. For example, keys must
be attained to access various parts of the dungeons, which pro-
vide the player with various items needed to successfully de-
feat the dungeon’s final boss. These complex constraints seem
well suited to being specified as Tier 2 constraints, in a manner
similar to the connectivity constraint. As well, it would be in-
teresting to consider levels containing multiple paths, instead of
requiring singly-connected paths. It might be possible to allow
multiple paths by aggregating together the results of running
each possible path independently, via the mean, minimum, or
maximum output from the model. As well, many of these con-
straints can be expressed in terms of graph grammars, and gen-
erative grammars have been applied to adventure game mis-
sion creation by Dormans [36]. As generative grammars can be
evolved with GAs, it would be interesting to see if such an ap-
proach could be combined with the model of player enjoyment
presented in our work.
It is also possible that this approach could be generalized

to even more types of games. Arcade games such as Breakout
[37] and Space Invaders [38] could have the arrangement of
blocks and enemies determined by the rhythm-group model.
As well, layouts for first-person shooters could be generated
in a manner very similar to the dungeon layouts as seen in
the Zelda application. This could prove especially lucrative
for large, open world games where a large amount of content
is required.
It would also be desirable to further test the model. Though

we have had the system’s output indirectly evaluated at the
Mario AI Challenge, it would be interesting to see if there
was any discernible correlation between what players found
fun, and what the model predicted as fun. Similarly, one could
attempt to train the model not on positive examples taken from
commercial games, as was the case in this paper, but rather
to train the model to learn a particular player’s preference,
as witnessed by their subjective evaluation of play. There is
also research in the automatic detection of player frustration
in games [39], as well as on statistical methods for modeling
player preferences [11], [40]–[42], and it would seem that those
efforts could be fruitfully combined with the current model.
Finally, because level generation takes on the order of tens

of minutes, it is not currently well suited to online level gener-
ation, where content is created in real time as the game is being
played. It is possible the generation time could be reduced by
creating smaller portions of game levels at a time instead of cre-
ating entire levels, as is currently the case. Even so, it may be
feasible to generate levels on the client’s system, even if they
are not immediately available. For instance, should a player be
found to be failing too often, the system could begin generating
a new level in the background, and switch the current level out
for the easier one when it is finished. If these background gen-
eration processes were seeded with initial populations of levels
with relatively high quality, it is quite possible that acceptable
variations for different model parameters could be found much
more quickly than the current method of constructing new levels
from scratch.

SORENSON et al.: A GENERIC APPROACH TO CHALLENGE MODELING FOR THE PROCEDURAL CREATION OF VIDEO GAME LEVELS 243

VII. CONCLUSION

We have demonstrated an approach to the generation of video
game levels that is founded on an explicit model of the relation-
ship between challenge and fun. The model is based on the no-
tion of rhythm groups, which are alternating periods of high and
low challenge that present a player with an engaging gameplay
experience. It identifies fun as a function of challenge with an
“inverted-U” shape inspired by the Yerkes–Dodson law, where
a particular rhythm group is deemed fun if it is neither too dif-
ficult nor too easy. The model’s effectiveness was evaluated by
employing it in a classification task, where it was able to identify
levels from the original Super Mario Bros. with high accuracy.
We have also demonstrated the generality of the approach

in applying the model to two different games. It was relatively
straightforward in both cases to represent the design problem in
terms of a set basic design building blocks, referred to as DEs,
and a collection of geometric constraints. We also noted that the
size and complexity of the DE set does not necessarily mean
that levels will be more difficult to generate. Although the Zelda
formulation had amuch simpler representation, it proved, by far,
more challenging to produce feasible levels in this context.
Finally, our model provides parameters that correspond di-

rectly to intuitive concepts. In particular, the parameter cor-
responds to the skill of the player, and can be adjusted by the
designer to create levels with various challenge profiles. This
high-level control is not typically offered by bottom–up, rule-
based approaches where the relationship between the genera-
tive parameters and the final output is not always clear. Further-
more, humans can directly specify certain portions of the level
by hand, which are then evaluated by the model in the same
manner as the automatically generated content. This results in
the rhythm-group structure adapting itself around the manually
created portion of the level; easy portions are surrounded by dif-
ficult sections, whereas simple stretches are surrounded by areas
of high challenge. This natural adaptation to externally provided
content is afforded by the top–down design of the system. It is
our hope that by modeling challenge dynamics in a high-level,
explicit manner will not only improve the quality of procedu-
rally generated content, but also contribute toward further re-
search in the analysis and understanding of the nature of fun in
video games.

REFERENCES

[1] J. Togelius, G. Yannakakis, K. Stanley, and C. Browne, “Search-based
procedural content generation,” in Applications of Evolutionary Com-
putation, ser. Lecture Notes in Computer Science. Berlin, Germany:
Springer-Verlag, 2010, vol. 6024, pp. 141–150 [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-12239-2_15

[2] M. Toy, G. Wichman, K. Arnold, and J. Lane, “Artificial intelligence
design,” 1983, Rogue.

[3] The NetHack DevTeam, Nethack, 2009 [Online]. Available:
http://www.nethack.org/

[4] P. Rivest, Far Cry 2, Ubisoft, 2008.
[5] The Freeciv Developers, Freeciv, 2010 [Online]. Available:

http://freeciv.wikia.com/wiki/Main_Page
[6] C. Remo, “MIGS: Far cry 2’s guay on the importance of pro-

cedural content,” Gamasutra, Nov. 2008 [Online]. Available:
http://www.gamasutra.com/php-bin/news_index.php?story=21165

[7] C. Browne, “Automatic generation and evaluation of recombination
games,” Ph.D. dissertation, Comput. Sci. Dept., Queensland Univ.
Technol., Brisbane, Qld., Australia, 2008.

[8] J. Togelius and J. Schmidhuber, “An experiment in automatic game de-
sign,” in Proc. IEEE Symp. Comput. Intell. Games, 2008, pp. 111–118
[Online]. Available: http://togelius.blogspot.com/2008/12/auto-
matic-game-design.html

[9] E. J. Hastings, R. K. Guha, and K. O. Stanley, “Interactive evolution
of particle systems for computer graphics and animation,” IEEE Trans.
Evol. Comput., vol. 13, no. 2, pp. 418–432, Apr. 2009.

[10] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: A mixed-initiative
level design tool,” in Proc. 5th Int. Conf. Found. Digit. Games, New
York, 2010, pp. 209–216.

[11] N. Shaker, G. Yannakakis, and J. Togelius, “Towards automatic person-
alized content generation for platform games,” in Proc. AI Interactive
Digit. Entertain. Conf., 2010, pp. 63–68.

[12] R. Hunicke, M. LeBlanc, and R. Zubek, “MDA: A formal approach to
game design and game research,” in Proc. 19th Nat. Conf. Artif. Intell.
Challenges Game AI Workshop, 2004, pp. 1–5.

[13] T. W. Malone, “What makes things fun to learn? Heuristics for de-
signing instructional computer games,” in Proc. 3rd ACM SIGSMALL
Symp./1st SIGPC Symp. Small Syst., New York, 1980, pp. 162–169
[Online]. Available: http://dx.doi.org/10.1145/800088.802839

[14] M. J. Apter, “A structural-phenomenology of play,” in Adult Play: A
Reversal Theory Approach, J. H. Kerr and M. J. Apter, Eds. Ams-
terdam, The Netherlands: Swets and Zeitlinger, 1991, pp. 18–20.

[15] P.-A. Garneau, “Fourteen forms of fun,” Gamasutra, Oct. 12, 2001.
[16] M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience.

New York: Harper Perennial, March 1991.
[17] P. Sweetser and P. Wyeth, “Gameflow: A model for evaluating player

enjoyment in games,” Comput. Entertain., vol. 3, no. 3, p. 3, 2005.
[18] R. Koster, Theory of Fun for Game Design. Sebastopol, CA:

Paraglyph Press, Nov. 2004.
[19] K. Salen and E. Zimmerman, Rules of Play: Game Design Fundamen-

tals. Cambridge, MA: MIT Press, Oct. 2003.
[20] R. M. Yerkes and J. D. Dodson, “The relation of strength of stimulus

to rapidity of habit-formation,” J. Comparat. Neurol. Psychol., vol. 18,
pp. 459–482, 1908.

[21] P. Piselli, M. Claypool, and J. Doyle, “Relating cognitive models of
computer games to user evaluations of entertainment,” in Proc. 4th Int.
Conf. Found. Digit. Games, 2009, pp. 153–160.

[22] G. Smith, M. Cha, and J. Whitehead, “A framework for analysis of
2D platformer levels,” in Proc. ACM SIGGRAPH Symp. Video Games,
2008, pp. 75–80.

[23] N. Sorenson and P. Pasquier, “The evolution of fun: Automatic level
design through challenge modeling,” in Proc. 1st Int. Conf. Comput.
Creativity, 2010, pp. 258–267.

[24] G. Smith, M. Treanor, J. Whitehead, and M. Mateas, “Rhythm-based
level generation for 2d platformers,” in Proc. 4th Int. Conf. Found.
Digit. Games, 2009, pp. 175–182.

[25] I. Albert, Video Game Maps, Sep. 2010 [Online]. Available: http://ian-
albert.com/misc/gamemaps.php

[26] C. A. Coello Coello, “Theoretical and numerical constraint-handling
techniques used with evolutionary algorithms: A survey of the state of
the art,” Comput. Methods Appl. Mech. Eng., vol. 191, no. 11–12, pp.
1245–1287, Jan. 2002.

[27] G. R. Harik, “Learning gene linkage to efficiently solve problems of
bounded difficulty using genetic algorithms,” Ph.D. dissertation, Dept.
Comput. Sci. Eng., Univ. Michigan, Ann Arbor, MI, 1997.

[28] K. Kuchcinski and R. Szymanek, JaCoP: Java Constraint Programming
Library, 2010 [Online]. Available: http://www.jacop.eu/

[29] N. Sorenson and P. Pasquier, “Towards a generic framework for au-
tomated video game level creation,” in Applications of Evolutionary
Computation. Berlin, Germany: Springer-Verlag, 2010, pp. 131–140.

[30] S. O. Kimbrough, M. Lu, D. H. Wood, and D.-J. Wu, “Exploring a
two-market genetic algorithm,” in Proc. Genetic Evol. Comput. Conf.,
2002, pp. 415–422.

[31] Newgrounds Inc., “Everything, by everyone,” 2010 [Online]. Avail-
able: http://www.newgrounds.com/

[32] K. Compton and M. Mateas, “Procedural level design for platform
games,” in Proc. 2nd Artif. Intell. Interactive Digit. Entertain. Conf.,
2006, pp. 109–111.

[33] S. Miyamoto, S. Hino, and T. Tezuka, Super Mario World, Nintendo,
1990.

[34] S. Miyamoto, T. Nakago, and T. Tezuka, The Legend of Zelda, Nin-
tendo, 1986.

[35] M. Tomassini, “Island models,” in Spatially Structured Evolutionary
Algorithms, ser. Natural Computing, G. Rozenberg, T. Bäck, J.
N. Kok, H. P. Spaink, and A. E. Eiben, Eds. Berlin, Germany:
Springer-Verlag, 2005, pp. 11–18.

244 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

[36] J. Dormans, “Adventures in level design: Generating missions and
spaces for action adventure games,” in Proc. Workshop Procedural
Content Generat. Games, 2010, pp. 1:1–1:8 [Online]. Available:
http://doi.acm.org/10.1145/1814256.1814257

[37] N. Bushnell, S. Bristow, and S. Wozniak, Breakout, Atari, 1976.
[38] T. Nishikado, Space Invaders, Midway, 1978.
[39] R. Hunicke and V. Chapman, “AI for dynamic difficulty adjustment

in games,” in Proc. Challenges in Game AI Workshop/19th Nat. Conf.
Artif. Intell., 2004, pp. 91–96 [Online]. Available: http://www.cs.north-
western.edu/~hunicke/pubs/Hamlet.pdf

[40] G. Yannakakis and J. Hallam, “Towards capturing and enhancing en-
tertainment in computer games,” in Proceedings of the 4th Hellenic
Conference on Artificial Intelligence, ser. Lecture Notes in Artificial
Intelligence. Berlin, Germany: Springer-Verlag, 2006, vol. 3955, pp.
432–442.

[41] C. Pedersen, J. Togelius, and G. Yannakakis, “Modeling player ex-
perience in Super Mario Bros,” in Proc. IEEE Symp. Comput. Intell.
Games, Sep. 2009, pp. 132–139.

[42] M. Jennings-Teats, G. Smith, and N. Wardrip-Fruin, “Polymorph: Dy-
namic difficulty adjustment through level generation,” in Proc. Work-
shop Procedural Content Generat. Games, 2010, pp. 11:1–11:4 [On-
line]. Available: http://doi.acm.org/10.1145/1814256.1814267

Nathan Sorenson is currently working towards the
M.S. degree at the School of Interactive Arts and
Technology, Simon Fraser University, Vancouver,
BC, Canada.
With his background in mathematics and computer

science, he researches the application of computa-
tional intelligence to problems that typically demand
human creativity. Having worked as a research pro-
grammer on educational “serious games” in conjunc-
tion with the University of Calgary and as an inde-
pendent video game developer, he is interested in ad-

vancing procedural content creation systems to enable smaller development
groups to produce rich, interactive environments. His thesis focuses on formal
models of fun in video games and automated level design. In addition to his
work on content creation for games, he also works to employ genetic algorithms
in the creation of art by developing tools for graphic designers to interactively
“breed” procedural, vector-based designs.

Philippe Pasquier studied computer science and
cognitive sciences in Europe, receiving the B.Sc.
degree from the Université catholique de Louvain
(UCL), Belgium, in 1998 and the M.Sc. degree from
Nantes Science University, Nantes, France, in 1999.
He then received the Ph.D. in artificial intelligence
from Laval University, Sillery, QC, Canada, in 2005.
He joined the School of Interactive Arts and

Technology, Simon Fraser University, Surrey, BC,
Canada, in January 2008, as an Assistant Professor.
He is both a scientist specialized in artificial intelli-

gence and a multidisciplinary artist. As a scientist, his work has focused on the
development of models and tools for endowing machines with autonomous, in-
telligent, or creative behavior. Contributions vary from theoretical research on
agents and multiagent systems to applied research in computational creativity.
As an artist, he has been acting as a performer, sound designer, composer,
producer, jury, committee member, and teacher in many different contexts. He
is serving or has served as a member or administrator of several artistic collec-
tives (Robonom, Phylm, MIJI), art centers (Avatar, Bus Gallery) and artistic
organizations (P: Media art, Machines, Vancouver New Music). His work has
been shown internationally and supported by more than 20 scientific or cultural
institutions including the National Sciences and Engineering Research Council,
the Canadian Council for the Arts, the French Ministère de la Culture et de la
Communication, the Australian Research Council and the Australian Council
for the Arts.

Steve DiPaola received the M.A. degree from New
York Institute of Technology (NYIT), New York, in
1991 and the Ph.D. degree from the University of
British Columbia, Vancouver, BC, Canada, in 2011.
Active as an artist and a scientist, he is the Director

of the Cognitive Science Program, Simon Fraser Uni-
versity (SFU), Surrey, BC, Canada, and leads the iVi-
zLab, a research lab that strives to make computa-
tional systems bend more to the human experience
by incorporating biological, cognitive, and behavior
knowledge models. Much of the labs work is cre-

ating computation models of very human ideals such as expression, emotion,
behavior, and creativity. He is most known for his AI-based computational cre-
ativity and 3-D facial expression systems. He came to SFU from Stanford Uni-
versity and before that NYIT Computer Graphics Lab, an early pioneering lab
in high-end graphics techniques. He has held leadership positions at Electronic
Arts, Saatchi Innovation and consulted for HP,Macromedia, and the Institute for
the Future. His computer-based art has been exhibited internationally including
the AIR and Tibor de Nagy galleries in New York City, Tenderpixel Gallery in
London, U.K., and Cambridge University’s Kings Art Centre, Cambridge, U.K.
The work has also been exhibited in major museums, including the Whitney
Museum, the MIT Museum, and the Smithsonian. His science work has been
published in over 50 peer-reviewed science publications and showcased in the
journal Nature.

