IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND Al IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011 229

A Generic Approach to Challenge Modeling for the
Procedural Creation of Video Game Levels

Nathan Sorenson, Philippe Pasquier, and Steve DiPaola

Abstract—This paper presents an approach to automatic video pled, overarching desighThis lack of modularity contributes
game level design consisting of a computational model of player to their reputation for being ditult to debug [6]. As well,
enjoyment and a generative system based on evolutionary com-yeir jdiosyncratic design tiethese generative techniques to a

puting. The model estimates the entertainment value of game levels _. L - .
according to the presence of “rhythm groups,” which are déned single game; it is not straightfaward to extract generalizable

as alternating periods of high and low challenge. The generative functionality from the highly spebtc procedural code. Finally,
system represents a novel combination of genetic algorithms (GAs) bottom—up approaches often provide little artistic control over
and constraint satisfaction (CS) methods and uses the model as athe pnal output.

btness function for the generatim of fun levels for two different The present work adheres to a top—down orientation by

games. This top—down approach impoves upon typical bottom—up - - - .
techniques in providing semantically meaningful parameters such adopting an evolutionary computation approach. Level designs

as difbculty and player skill, in giving human designers consider- are considered to be individuals in a population and levels of
able control over the output of the generative system, and in of- high-quality pass on their characteristic genetic information to

fering the ability to create levels for different types of games. future generations. Quality is determined by high-level design
Index Terms—Challenge modeling, fun, player enjoyment, pro- 90als spedted as abtness function. Thisbtness function
cedural content creation, video games. operates solely on thenal generated output and is ignorant of

the spedbc manner in which the content is generated, allowing
for much more generality than bottom—up approaches.
I. INTRODUCTION We presentbrst, our model of player enjoyment, which
serves as the foundation for the rest of the system. We describe
S video games exhibit progressively expansive ganiiee scope of the model, justify its design by drawing from
environments, there has been a growing interest video game research as well agbysis of existing commercial
employing generative computational algorithms to mitigatgame levels. We evaluate this model in its ability to identify
the cost of authoring game content [1]. Broadly referred to @a@mmercial-quality levels amonagrbitrarily generated levels.
procedural content generatiothese techniques can be seewe then show how this model is used aptaess function in
in early games such &ogue[2] and Nethack[3], as well as an evolutionary system. The sgst is applied to two different
more recent games suchkar Cry 2 [4]. These computational game contexts, demonstrating its general applicability. We
techniques promise to reduce the involvement of a humaonclude with discussion of the bere of this approach and
designer, thereby enabling srmelldevelopment teams to createliscuss future work.
much more content than would otherwise be possible and,
because algorithmically gerated content is not @xed as A. Previous Work
content authored by hand, create content that is more readily .
adapted to the unique preferences of individual players. 1) Video Game Geerative Systemsprocedural content

This paper presents a proceducontent generation systemcreat'onlﬂ'IS ap?ct'lo\\/e a;galofl rese:;rtc_h, and _matn%/ d|fLerent
that is able to create game eromments (levels) for a variety approaches ast. A particuarly ambilious project has been

of games. Our system differs from existing systems in its aHle au_toman_ generation of entire games. Brc_)wne .[7] employs
herence to a top—down approach, as opposed to a bottom- etic algrithms (GAs) to construct combinatorial abstract

rule-based approach. These baiteup systems typically create? {nets__sm:ar to Ches_san;it Go. I:e stt_Jccetrs]siully p_rotd UC]?S
levels through an iterative execution of a number of productioerp ertaning games using &ness function that consists ot a

rules or through amd hocassortment of deeply nested condi\—"’e'ghte‘jsum of 57 design criteria, drawn from a wide array

tional branches and lengthy switch statements with no prin&]j SOures, |nclu<_j|ng_ psy_chology, subj_ecuve aesthetics, and
persondcommunication with game designers. We also use an

evolut

Manuscript received November 01, ZD¥evised March 09, 2011; accepted
June 20, 2011. Date of publication July 07, 2011; date of current version
September 14, 2011. This work was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC).

N. Sorenson is with the School of Interactive Arts and Technology, Simon
Fraser University, Vancouver, BC VEN3 Canada (e-maihds6@sfu.ca).

P. Pasquier and S. DiPaola are with the School of Interactive Arts and Tech-
nology, Simon Fraser University, Surrey, BC V3A0A3 Canada.

Color versions of one or more of thrgures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object IdentPer 10.1109/TCIAIG.2011.2161310

230 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

by the degree to which neural networks are able to mirror the
experience of human players.

Hastings et al. [9] evolve weapons for a space-themed video
game. The fitness of a given weapon design is inferred from the
behavior of the player as the game progresses; if the player uses
a weapon frequently, similar weapons are made available. Con-
versely, if a weapon is left unused, it appears less frequently.
This approach is an example of an interactive fitness function,
where evolution is guided through human choice. Our work dif-
fers as it provides an automatic fitness function which does not
require direct human involvement.

Smith et al. [10] introduce a mixed-initiative design tool for
the creation of 2-D platformer games. Their tool allows cer-
tain portions to be specified by hand, with the rest constructed
according to a rule-based system. This system produces levels
that conform to a rhythm-group structure, with contiguous pe-
riods of challenge interspersed with moments of rest. Although
our work shares the goal of permitting human designers a great
deal of influence over the system’s output, we express rhythm
groups explicitly through an objective model instead of implic-
itly through the behavior of a collection of production rules.
Shaker et al. [11] also generate Mario levels to optimize a model
of player enjoyment. Instead of explicitly constructing a min-
imal model with author-adjustable parameters, as is the case
with our work, their model is inferred from player behavior
using a statistical approach; players must explicitly evaluate
how much fun they had during a play session before the model
can predict what future levels will be most enjoyable. As well,
their generative technique is restricted to adjusting four param-
eters of a rule-based random level generator that is specific to
Mario, whereas our generative approach seeks to offer greater
control to level designers in a manner which can be generalized
to different types of games.

2) Characterizations of Fun: Fun is a broad term and any
attempts at a precise definition would certainly require a limita-
tion of scope, as no single statement is likely to encompass the
entire concept. Even restricting the discussion to the domain of
video games does not permit a simple characterization; Hunicke
etal.[12] even argue that the term “fun” should be discarded en-
tirely, as it is too vague to be considered a practical unit of anal-
ysis. They suggest several more precise terms, such as “problem
solving,” “competition,” and “discovery.” Similarly, the works
of Malone [13], Apter [14], and Garneau [15] outline various
major components of fun. Although these taxonomies provide
useful terminology, it is doubtful they allow for deeper analysis
of the nature of fun in video games. While they identify broad
categories of fun often encountered in games, they say little re-
garding precisely what structures and dynamics are responsible
for creating pleasure.

3) Flow: A common thread among analyses of game per-
formance and player enjoyment is the notion of “flow,” as ex-
pounded in the work of Csikszentmihalyi [16]. The psycholog-
ical state of flow is brought about when a number of prerequisite
conditions are satisfied, such as one feeling in control of a situ-
ation, losing awareness of the passage of time, and executing a
task that is neither too easy nor too difficult for one’s skill level.
Flow is characterized by intense focus and heightened task per-
formance and is often referred to as a state of “optimal experi-

ence.” Sweetser and Wyeth have adapted the principles of this
concept into a framework, called “GameFlow” [17] that iden-
tifies properties of game designs which especially facilitate the
creation of a sense of flow.

The importance of flow in understanding certain gaming ex-
periences, particularly the connection between challenge and
fun, is noted by several authors. In A Theory of Fun, Koster
states that “fun is the act of mastering a problem mentally” [18]
and that the process of overcoming difficult tasks is the source
of pleasure in games, whether it is through identifying patterns
in the behavior of enemy characters or developing the muscle-
memory necessary to execute a sequence of button presses in a
fighting game. If the task is too difficult, the player does not ex-
perience a sense of mastery. Conversely, if the task is too easy,
the player does not need to develop any skills to succeed. Salen
and Zimmerman confirm the central role of difficulty in pro-
viding fun experiences, and though they emphasize that flow is
not synonymous with fun, they do claim that challenge and frus-
tration are “essential to game pleasure” [19].

There are definite affinities between the challenge-based di-
mension of flow and the Yerkes—Dodson law [20], which states
that performance reaches its maximum when the arousal felt
during the completion of a task is neither too little, nor too great.
Piselli et al. [21] have shown that this phenomenon is equally
applicable to the context of video games, even when considering
pleasure, instead of task performance, as a function of difficulty;
players have the most fun when presented with challenges that
are difficult, but not impossible to overcome.

II. MODEL OF FUN

One of the central contributions of this work is a computa-
tional model of fun as experienced in challenge-based video
games. This model is based on the notion of rhythm groups
as introduced by Smith et al. [22], which are design structures
consisting of repeating oscillations between periods of high and
low difficulty. The relationship between the degree of challenge
posed by a rhythm group and the resulting fun as experienced by
the player is informed by the Yerkes—Dodson law and aspects
of the concept of flow.

Our previous attempt to model this phenomenon [23] was in-
tended to provide a clear account for the experience of fun as
a result of thythm groups, and offer meaningful parameters to
allow the model to be adapted to a wide variety of game context
and player abilities. The currently presented model has the same
purpose, but improves on the earlier formulation significantly.
Whereas the previous model could reproduce level structures
that appeared visually similar to those existing in commercial
games, the current model is able to be trained as a classifier
on actual level data, and is able to effectively distinguish be-
tween examples of good and poor level design, providing much
stronger evidence of its effectiveness.

A. Model Scope

Certainly, the notion of fun is a nebulous concept, and the
specification of the model’s characterization of quality requires
particular attention. We emphasize that the purpose of our
rhythm-group model is to serve as a fitness function in a gener-
ative process, evaluating the relative quality of generated levels.

SORENSON et al.: A GENERIC APPROACH TO CHALLENGE MODELING FOR THE PROCEDURAL CREATION OF VIDEO GAME LEVELS 231

Fig. 1. Segments of four of the 28 levels used to inform the design of the model of fun.

Because our goal is not primarily to model a psychological
state of fun, we use the term “fun” in a more pragmatic sense:
as a measure of the quality of a level’s design. According to this
sense of the term, validation for the model does not come from
subjective studies with human participants but, rather, from
observations of the game industry’s classic, enduring examples
of good level design. We do not entirely distance ourselves
from the notion of fun as a pleasurable mental state; certainly, a
level of high quality is ultimately a level which gives pleasure
to the player. However, for our purposes, we assume that the
properties that elicit this state of pleasure are sufficiently mani-
fest in the level designs and that we can, therefore, understand
important qualities of challenge-based fun by restricting our
analysis to the level designs alone. In other words, the model
is considered successful insofar as it is able to attribute high
fitness values to levels which exhibit structures characteristic
of those found in well-designed levels. The important task of
validating this assumption through user studies is reserved for
future work.

Our model of fun, and our generative process as a whole, ap-
plies to challenge-based action games. These are games where
the predominant form of pleasure does not arise from explo-
ration, online social interaction, logical puzzle solving, or nar-
rative, but rather through reflex-based tests of skill. Indeed, there
are so many aspects to the concept of fun in general that it be-
comes necessary to restrict our focus to a single area; we claim
that reflex-based challenge is more amenable to formal analysis
than, for example, narrative or aesthetic pleasure.

To define our scope even more precisely, we are interested
in games in which the challenge is delivered primarily through
the level design. This requirement includes genres such as
platformers and action—adventure games, but notably excludes
genres such as fighting games and sports games. In these games,
the nature of the challenge, and ultimately the fun experienced
by the players, is primarily a function of the skill of the oppo-
nents (artificial or human) or of the rules and controls governing
the game mechanics. The levels of such games serve merely as
an aesthetic backdrop to frame the game and do not serve as
a promising target for automatic generation. This distinction
justifies the use of our model as a direct fitness function for
level evaluation, a notion which Togelius et al. [1] defines in
contrast to simulation-based fitness functions, which depend
on a dynamic observation of actual gameplay to assess quality.

B. Model Design

The model’s purpose is to estimate the amount of fun pro-
vided by a particular level, based on that level’s configuration of

challenge. The model depends on the notion of rhythm groups,
similar to those described by Smith et al. [24], but with impor-
tant distinctions. Whereas Smith et al. describe rhythm groups
in terms of timed sequences of button presses, analogous to
rhythmic beats in musical compositions, we emphasize the more
general notion of oscillating challenge over time.

Our model attributes high values of fun to levels containing
rhythm groups that resemble those found in actual games, and
its ultimate purpose is to evaluate and guide the output of our
generative system. For the model to be deemed useful, it must
reward levels which exhibit a number of important properties
that are noticeably present in real-world levels.

1) Level Test Cases: Twenty-eight levels taken from Super
Mario Bros. were used to inform the design of the model.
These levels were chosen according to the degree to which
their design contributed to the ultimate challenge dynamics of
the game. This criteria excluded “boss levels,” as the difficulty
of these levels is primarily determined by the patterns of move-
ment of the final enemy. Some other levels were excluded, such
as the ones containing a “Cloud Koopa” enemy, who follows
the player, hurling new enemies for the duration of the level.
Underwater levels were also excluded due to their significant
difference from the rest of the game. Excerpts from some of
the 28 chosen levels are shown in Fig. 1.

The levels were reconstructed by Ian Albert from recorded
screen captures of play sessions, which are made available on
his website [25]. We convert these screen captures into a format
more amenable to analysis through computer vision techniques;
the basic sprites corresponding to the various types of blocks
and enemies are identified, and the location and distribution of
each object type is found through template matching. We deter-
mine enemy locations from their sprite coordinates and find hole
locations by detecting gaps in the blocks located at the bottom of
the level. This information is converted into a time-series rep-
resentation of the “challenge events,” a signal that is zero ev-
erywhere, except for unit impulses at the places where enemies
or holes are located. The particular distribution of these chal-
lenge events is what we hypothesize as predominantly affecting
the amount of fun had by players. Examples of some of the re-
sulting time series are shown in Fig. 2.

From examining the 28 test cases, we draw the following gen-
eralizations, which we will later use as evaluative criteria for our
model.

1) Too much continuous difficulty is undesirable. Though

each rhythm group presents the player with a high degree
of challenge, it is not so great as to cause frustration and a
reduced sense of pleasure for the player.

232 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

7 @ oo oo o o eecceoe eme o o °

6 & L] L @ L] *® o L _J & @« - LB] LN oo e 0o0®0 o
D 5' L] - @ "0 @ o 3 LN _J (Il NN N J L] @ @ L] @
= 4- ® e ® ° o o ® oo o0 o ° ©
E 3 LN} ®0 @00 ® 00 00000 L] LN] o® e o L]

2 - L] - o @ LN 1] o®» ¢ eoeo o0 0ee o 00 @

l L L L.J L o0 o &8 L ©80 L] -

0 20 40 60 80 100 120 140 160 180

Challenge Events

Fig. 2. Depiction of the challenge events of seven of the 28 levels used to in-
form the design of the model of fun. Horizontal scale is in 16 x 16 block units.
Note the visible clustering of challenge events into thythm groups.

2) Rhythm groups are not necessarily strictly periodic. They
certainly exhibit a cyclical pattern; however, there is no ev-
idence that there is a predominant frequency to the ampli-
tude of challenge over time. Levels with variously spaced
rhythm groups should not be penalized.

3) The model should account for players of different skill
levels. The model should not be fragile in the sense that it
applies only to a single, idealized player but should rather
be adaptable to a wide variety of players through the ma-
nipulation of a few, semantically meaningful parameters.

4) Rhythm groups should conform to a reasonable scale on
the order of seconds; it should not be possible for a gener-
ative system to exploit the model with obvious degenerate
constructions, such as levels containing a single rhythm
group lasting for the entire duration of the level. The model
is most useful for the purposes of level generation if it
is sensitive on a small scale and is able to identify even
minute improvements in a level’s layout.

C. Model Formalization

1) Challenge: Because rhythm groups are defined in terms
of challenge dynamics, our model presupposes the existence of
a suitable technique to measure the change of challenge over
time. It is outside the scope of this work to address the notion
of challenge generally; thus, we must assume that the model
is provided with a challenge metric ¢(t), which returns, for a
given level, the degree of challenge at the time #. Certainly, the
manner in which this value is calculated will vary depending on
the game context. For example, with Mario we use a challenge
function that identifies a portion of a level with any given value
of ¢, and associates difficulty values based on the design of the
level at that given point. In particular, a large gap with a small
margin of error for mistakes will be attributed a relatively high
value of difficulty, whereas a large, straight segment with no
enemies will be given a challenge value of zero.

The construction of the challenge metric entails certain sim-
plifications. For one, we must treat challenge as a single dimen-
sional value. We also assume that the challenge metric is always
nonnegative. While the particular values do not matter (all we
are concerned with is relative ordering), we take zero to repre-
sent the lowest possible challenge experienced in the game. We
also depict challenge as a value that can be sampled at a single
point . Sections IV and V provide example formulations for
¢(t) in the context of two different games and demonstrate the
modeling of challenge as instantaneous impulses, that is, for-
mulating (%) as a sum of Dirac delta functions (unit impulses),
as illustrated in Fig. 3. Finally, we take the value of challenge to

mypd >

7;1‘mduw

Fig. 3. Illustration of thythm group ¢ in the context of Mario. Vertical arrows
represent the challenging events (holes) as unit impulses, and the curve repre-
sents the amount of accumulated challenge in the time window. Rhythm-group
boundaries are located at points t;_; and ¢;, because the windowed challenge
temporarily decreases below the threshold 2. The accumulated challenge in the
entire rhythm group ¢; corresponds to the integration of the impulses located be-
tween boundaries £;_, and ¢;.

represent the difficulty of a certain level segment absolutely, that
is, irrespective of player skill. Thus, if we were to suggest a pos-
sible unit of measure for the challenge metric, these units would
be constant for everyone, not relative to a particular personal ex-
perience of that level. Again, this does not prove to be a problem
as the model provides threshold parameters which account for
the fact that skilled players would be capable of enjoying higher
degrees of challenge than a player with less skill. In other words,
skilled players could be exposed to a higher amount of these hy-
pothetical “challenge units” before becoming frustrated.

It must be emphasized that because c(#) is ultimately used
as a component of an automatic fitness function, it needs to be
calculated without any human input; it must be possible to find a
reasonable estimate of a level’s configuration of difficulty over
time simply by analyzing the level’s layout. This is the primary
reason why we restrict our discussion to challenge-based games
in which the difficulty is mostly a function of the level design.

2) Modeling Fun: The determination of a level’s quality
consists of a two-pass process. First, the level is partitioned
into a set of » rhythm groups with boundaries located at times
to,t1,...,t,. The identification of thythm-group boundaries is
governed by a greedy algorithm that identifies periods of suf-
ficiently low challenge, which are identified as periods of re-
laxation. A window of size Tyindow 1S shifted along the chal-
lenge function, and positions the boundaries at points where
the total amount of challenge in the window is less than the
threshold m. More precisely, boundaries are located at posi-
tions ¢ where ftt—Twar.dnw c(t)dt < m. After a boundary is as-
sociated at a given point in time, the window does not place any
more boundary points until after it has witnessed a period where
the challenge temporarily exceeds m. Otherwise, extended pe-
riods of low challenge would be identified with a dense interval
of infinitely many rhythm groups. Put more simply, the greedy
process only identifies a new period of relaxation until after an
intervening period of challenge has elapsed. A rhythm-group
boundary is always placed at the beginning and end points of a
level, and because the process is greedily run from the begin-
ning to the end, it produces a unique segmentation.

With this segmentation in place, it is possible to identify the
level with a fitness value. A level is rewarded for each rhythm
group that contains the appropriate amount of total accumulated

SORENSON et al.: A GENERIC APPROACH TO CHALLENGE MODELING FOR THE PROCEDURAL CREATION OF VIDEO GAME LEVELS 233

00 05 10 15 20 25
Anxiety

Fig. 4. Fun f as a response to increasing anxiety (accumulated challenge) ¢;
when M = 1.0, in the context of a single thythm group. The response is defined
by the function f = (2¢; /M) — (cZ/M?).

challenge, which we refer to as “anxiety,” specified by the upper
threshold M. Formally, if the amount of anxiety contained in
rhythm group i is given by ¢; = |, ::71 ¢(t)dt, then the amount
of fun f attributed to the level as a whole is defined by

- 2¢; c?
f:Zﬁ_ M2
i=1

)

D. Model Characteristics

The numerical response of the model is demonstrated in
Fig. 4, which illustrates the amount of fun in a particular rhythm
group as a function of the accumulated challenge in that rhythm
group. Recall that accumulated challenge—that is, challenge
integrated over a period of time—is referred to as “anxiety.”
In other words, where ¢(t) represents the amount of challenge
present at the instantaneous point £, ¢; represents the total
amount of challenge integrated over the duration of rhythm
group ¢, which constitutes a quantity of anxiety. The rhythm
group attains its maximal fun potential when the amount of
anxiety present is exactly M. The fun provided by a rhythm
group decreases if the amount of anxiety experienced in that
group is greater or lesser than this critical point. This function
is evaluated independently for each rhythm group, and the fun
for the entire level is the sum of each independent evaluation.

We define the formula depicted in Fig. 4 in order to mimic
the famous “inverted U” shape described by the Yerkes—Dodson
law [20], which essentially states that task performance is op-
timal if arousal is neither too high nor too low. Piselli et al. [21]
have shown that this phenomenon is equally applicable to the
context of video games, even when considering pleasure as a
function of difficulty instead of task performance. Our model,
then, idealizes this phenomenon within a computational setting,
and applies it at the scale of individual rhythm groups.

To illustrate the effect of using this model to guide a genera-
tive system, we employ the model as a fitness function in a GA
that evolves challenge time series directly, with no reference to
an actual game context. The genotype is a variable-length list
of challenge locations, which corresponds exactly to our repre-
sentation of the 28 levels drawn from Mario. We use typical GA
settings, with crossover at 0.9 and mutation at 0.05, and stop the
evolutionary run when progress has stalled for ten generations.
The results are shown in Fig. 5.

2
Q
z
=
<
0 50 100 150 200 250
t
(@)
10.0-
5, 15
S
% 5.0-
2
2.5+
0.0-: i 1 1 i :
0 50 100 150 200 250
t
(b)
Fig. 5. Challenge time series with high fitness, as induced by the model with
Twindow = 10, and m = 1. The curve depicts accumulated challenge in each

rhythm group (¢;). Notice that the anxiety in each rhythm group attains M . (a)
Constant A . (b) Varying A .

Our model satisfies the four motivating properties outlined in
Section II-B. First, it is evident that the model penalizes levels
with excessively high difficulty values; the reward for a given
rhythm group attains its maximum at the value M and decreases
quickly after that threshold has been surpassed. Second, there
is nothing in the formulation that encourages strict periodicity;
fitness is rewarded solely based on the amount of challenge
present in a thythm group and is not predicated on the rhythm
group conforming to any specific width.

As well, the model can easily and intuitively be adjusted to
account for players of different skill levels. The parameter M
corresponds to the skill of the player, and can be raised or low-
ered to create levels with higher or lower levels of difficulty. As
Fig. 5(b) shows, this parameter can even be adjusted over the
course of a single level, providing the designer with the ability
to control the overall arc of challenge at a high level, in this case
creating a level with a very challenging midpoint with easier
portions at the beginning and end. It would similarly be pos-
sible to adjust m dynamically in order to raise or lower the lower
bound of anxiety required to trigger rhythm-group boundaries.

Finally, the above model does not lead to degenerate cases,
as rhythm groups that are too long impose a low upper bound
on the total amount of fun that can be attributed to a level. If
a level were to be identified as consisting of a single rhythm
group, then the amount of fun attributed to that level would be,
at most, 1. Any level with more numerous (and smaller) rhythm
groups will certainly be able to exceed that value and be favored
for selection. On the other hand, rhythm groups must be at least
a width of Tiq0w, Which places a lower bound on their size. In
this way, these two bounds ensure that rhythm groups exist at a
scale that can allow a level design to be analyzed at a meaningful
resolution—on the order of seconds, not minutes.

E. Learning Parameters

Provided that a suitable challenge metric ¢(t) is defined and
that values are specified for the parameters M, m, and Tywindow

234 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

the model is able to estimate a level’s entertainment value. How-
ever, it is possible to perform the reverse operation, beginning
with a set of levels of a known entertainment value and working
backward to infer the specific model parameters that reproduce
the observed values. This task is an instance of an expectation
maximization problem, with the goal of finding model parame-
ters that account for an observed set of example levels. By fol-
lowing this procedure, it becomes possible to mimic the partic-
ular challenge characteristics of an existing game; given a set of
levels that are considered to be well designed, the model can be
trained to reward levels with similar challenge configurations.
This could be an effective way to expand the content of a game,
as any automatically generated levels would exhibit the same
difficulty patterns as the human-designed levels.

The inference of the model parameters also serves as a means
of validating the model itself. If certain parameters allow the
rhythm-group model to successfully distinguish between well-
designed and poorly designed levels, it stands to reason that
the model is sensitive to relevant characteristics of high-quality
level design. Indeed, this validation is of critical importance
when asserting the usefulness of analyzing levels in terms of
rhythm groups. We do not currently rely on qualitative, sub-
jective evaluations of fun (such as questionnaires) to evaluate
the model; instead, we can assess the model’s effectiveness by
treating it as a classifier of existing, real-world levels, judging
its performance in the same way many other machine learning
techniques are judged. Furthermore, this approach provides an
avenue of testing the model independently of any particular gen-
erative context. Evaluating the output of a generative system
that is based on the rhythm-group model does not necessarily
demonstrate that the model, itself, is responsible for the quality
of that output; it could be the case that the generated levels are
fun only because of some felicitous property of the generative
system. However, in evaluating the model in isolation, we can
more confidently defend the use of rhythm groups as a mean-
ingful analytical tool.

1) Classification Results: It proves to be the case that the
model is, indeed, able to successfully distinguish between the
challenge time series of the 28 levels taken from the original
Super Mario Bros. game, which are considered to be examples
of good level design, and 30 time series that were crafted to
represent examples of poor level design. We constructed the
30 negative examples to represent properties that would be
obviously undesirable in well-designed levels, arguing that the
model would certainly need to be able to identify these levels
as poorly designed before it could be seen as effective. In that
sense, this experiment establishes baseline functionality and
serves as a “sanity check” of the model’s usefulness.

Because we have seen that actual levels have no regular pe-
riodicity, we have generated negative examples that do exhibit
a regular, periodic structure. We have 14 negative examples in-
tended to represent levels that are clearly too difficult. Some
contain challenge impulses located 1-3 units apart for the en-
tire duration of the level, while others contain bursts of 20 con-
tiguous challenge impulses located between 20 and 30 units
apart. Similarly, we have 16 examples of levels that would be
too easy, with single challenge impulses separated by 20-30
units of space.

TABLE 1
MEAN AND VARIANCE FOR THE TEN OPTIMAL PARAMETER SETTINGS
FOUND THROUGH CROSS VALIDATION

Parameter || Mean | Variance
Twmnlmu 9.5 6.6
M 7.3 3.5
m 1.5 0.2

The model can be converted to a classifier through the ad-
dition of an extra parameter §, which represents the threshold
of fun above which a level is considered to belong to the class
of well-designed levels. For the sake of convenience, we train
the classifier using the evolutionary system we have in place,
which was, indeed, able to find effective model parameters for
this classification task. We treat model parameters as individ-
uals in a population and define a fixed-length genotype defined
by the tuple (Twindow, M, m,). The fitness of a set of param-
eters is given by the proportion of correct classifications of the
training data. Optimal values were routinely found within the
span of a few generations, and evolution was stopped if there
was no fitness improvement after five generations.

The experiment was conducted as a tenfold stratified cross
validation by randomly partitioning the 58 training examples
(consisting of the 28 real Mario levels and the 30 hand-designed
negative examples) into ten groups of five or six examples, with
roughly three positive and three negative examples per group.
The model was then trained on each of the ten different groups
formed by removing one of the sets for validation purposes (so
that the same data points were never used for both training and
validation). The model was quite successful at distinguishing
our real levels from the poorly designed levels; with only two
false negatives, it achieved precision score of 1.0 and a recall
score of 0.93.

Also encouraging is the fact that the optimal parameters con-
formed to their intuitive roles in the function. As shown by
their mean values in Table I, rhythm groups corresponded to
periods containing an average of seven challenge impulses, and
inspection of the 28 example levels reveals visible clusters of
challenge events containing roughly that many items. It is rea-
sonable that a period of about ten blocks with only a single
hole or enemy (according to Twindow and 1) would constitute a
rhythm-group boundary. In other words, it is a reassuring result
that the parameters which correspond with an intuitive, visual
inspection of actual Mario levels are precisely the parameters
that lead to successful automatic classification under the pro-
posed model.

III. IMPLEMENTATION

The generative process is ultimately a search through the
space of possible designs. The system attempts to find a par-
ticular level that demonstrates a good configuration of rhythm
groups and that possesses, therefore, a high fun value. This sec-
tion goes into more detail regarding the particular techniques
used to traverse this space successfully.

SORENSON et al.: A GENERIC APPROACH TO CHALLENGE MODELING FOR THE PROCEDURAL CREATION OF VIDEO GAME LEVELS 235

At the core of the approach lies a GA, for which each potential
level design is represented by a genetic encoding. We extend the
basic algorithm with new features that help to overcome some
difficulties associated with evolutionary search. Constraint sat-
isfaction (CS) methods are employed to form a hybrid system
that effectively optimizes the value of fun for levels while si-
multaneously observing the strict constraints inherent to level
design.

A. Problem Domain

Level design remains a challenging Al search problem for
two primary reasons. First, it is a task characterized by high di-
mensionality; a single level design in our system contains hun-
dreds of degrees of freedom. GAs are an effective tool when
approaching this kind of problem, as they are well suited to
such high-dimensional search spaces. However, level design
is also a highly constrained task. Level elements must be ar-
ranged in such a way as to ensure that the player is able to tra-
verse the level. For example, in Super Mario Bros, if a platform
was placed too far from a ledge for a player to reach, the en-
tire level would be rendered unplayable. An objective function
would typically associate completely broken levels such as this
with a fitness value of zero. Because a small change in the po-
sitioning of a single element of a level can drastically change
the objective quality of the level, the problem is said to have a
highly discontinuous fitness landscape, suggesting the problem
is poorly suited to an evolutionary approach. In cases where the
constraints between solution elements are critical, CS methods
are more appropriate.

The generative approach presented in this paper is con-
structed to address both concerns simultaneously, and is an
example of a hybrid constraint solver and evolutionary system
[26]. Such systems strive to observe the constraints of the
problem domain while exploring a high-dimensional search
space in order to maximize an objective fitness function.

B. Genetic Representation

The genetic representation of a level is a variable-sized,
unordered set of design elements (DEs). Design elements are
atomic units that combine to form a game level. Intuitively,
DEs represent the components a human level designer would
arrange when manually constructing a level for a game. For
example, a single enemy in Mario is represented as a DE. A
given game will include a number of different types of DEs,
which together express the breadth of elements available to
the game designer. More detailed examples of constructions of
DE:s for specific games are offered in Sections IV and V.

Each type of DE is defined by a number of parameters and
is essentially a tuple containing floats, integers, and Booleans
that represent the characteristics of that DE. For example, in
an adventure game, an enemy DE might have two dimensions
representing its horizontal and vertical position, one dimension
representing its strength, and a Boolean dimension determining
if it is armed or unarmed.

1) Genetic Operators: Mutation is accomplished with re-
spect to a single DE. A single mutation operation can either
be the addition of a new random DE to the genotype, the dele-
tion of a DE from the genotype, or the modification of one of

a DE’s constituent property dimensions. A new DE can be cre-
ated by selecting from one of the game’s basic types of DE and
setting its dimensions to random values in their respective do-
mains. Mutation of a DE is achieved by selecting a new value
for arandom parameter. If the parameter is a real-valued number
or an integer, the parameter is perturbed to a degree defined by
a Gaussian distribution. If it is an unordered categorical vari-
able (including Boolean parameters), it is set to a new allowable
value with uniform probability. Each DE dimension can also be
associated with a scaling parameter that affects both the scale of
the Gaussian distribution and the variance of the mutation that
is applied to a particular dimension.

The crossover operator is similar to variable-point crossover
but modified slightly to be compatible with our representation.
Standard variable-point crossover is achieved by picking a
random cut point in the two parent genotypes and swapping
two halves of each split parent genotype to create two new off-
spring. Our genotype representation consists of an unordered
set of DEs, and typical crossover operators are defined in
terms of ordered, linear genotypes, so standard variable-point
crossover cannot be applied directly. However, because our
DEs represent substructures with spatial position, we can
impose a linear order by sorting along a spatial dimension.
This approach is applicable to any n-dimensional space; every
crossover involves picking a dimension at random, sorting
by that dimension, and behaving exactly as a variable-point
crossover on the now-linear representation. For example, in a
2-D context, the parents will be split by a random horizontal or
vertical plane, and the offspring will be formed by taking all
the DEs that lie to one side of the plane from the first parent, as
well as all the DEs that lie on the other side of the plane from
the other parent.

This approach serves to draw together within the genotype
DEs that represent level structures that are in close proximity,
providing the property known as gene linkage [27]. An impor-
tant aspect of any genetic representation is the strength of the
gene linkage, which determines the efficacy of the crossover op-
eration in preserving useful modular substructures. In the worst
case, when the DEs have an arbitrary ordering, the GA degrades
into regular hill-climbing (albeit with large, random, and dis-
ruptive changes interspersed with smaller mutations). Strong
gene linkage, however, is what enables GAs to naturally pre-
serve high-fitness substructures throughout a population, which
would be otherwise destroyed through small-step mutations.

C. Constraint System

CS methods are added to the typical GA structure in order
to address the challenges of a highly constrained solution space
with a discontinuous fitness landscape. We use CS to repair the
genotypes that are subjected to breaking changes. We use two
distinct forms of CS, which address two particularly relevant
forms of level design constraints. Constraints can be formulated
as simple, local, spatial relations such as “the object X must not
overlap the object Y.” These constraints can be solved with the
“Tier 17 CS system, which immediately alters the genetic rep-
resentation to directly satisfy the constraints. Not all constraints
can be easily expressed in terms of local, spatial relations, how-
ever. For example, the constraint “there must be an unblocked

236 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

path between the points A and B” cannot be easily expressed as
a geometric constraint between two elements. These more com-
plex constraints are handed by the “Tier 2” constraint system.

1) Tier 1 System: Tier 1 is an example of a typical con-
straint solving algorithm that employs variable selection, do-
main pruning, and backtracking. We use, specifically, the JaCoP
open source Java constraint solving library [28] as the founda-
tion of our approach and modify it to better suit our use of it as
a reparation step in a GA. JaCoP is particularly useful as it fea-
tures a geometric constraints module which allows many con-
straints typical of spatial arrangements to be straightforwardly
expressed and efficiently solved.

Because of JaCoP’s role as a genotype reparation step in a
larger process, we are concerned with more than simply finding
a set of values that satisfy the problem constraints. We want to
ensure that the reparation process modifies an existing geno-
type as little as possible in its attempt to provide a viable so-
lution. The benefits of this are twofold. First, because the GA
uses the rhythm-group model to evaluate designs, the more we
alter a given level design to satisfy game-specific constraints,
the more likely we are to disrupt the rhythm-group structure and
reduce the effectiveness of the model in producing fun levels.
A second benefit to altering the genotype as little as possible is
the possibility of allowing human designers direct control over
portions of the system’s output. We can use the same machinery
that minimizes genotype modifications to ensure that the system
respects the designer’s adjustments to the level and alters the
level in such a way to minimize disruptions to content made by
human designers.

Our CS problem can then be framed as a search for values for
the DE dimensions that minimize a cost function that represents
how much they are altered. This is achieved by extending the
JaCoP CS library with alternate variable selection and value
selection processes. Constraint solving requires picking both
a variable to alter and a new value for that variable and our
approach is to prioritize the choice of values so as to reduce
the potential negative impact. In other words, if the original
value of a certain DE dimension, as set by the GA, is 3, the
values are chosen in the order of increasing distance, e.g.:
[4,2.5,1,6,0,7,—1,...]. We do not claim that this approach
always produces the absolute global minimum disruption, but
it is more effective at approaching this goal than an arbitrary
value assignment.

Every individual that can be successfully repaired through the
Tier 1 system is fixed and placed back into the population.

2) Tier 2 System: The Tier 2 system handles individuals that
cannot be repaired through the Tier 1 process, and can satisfy
certain constraints which cannot be easily expressed using the
primitives provided by the JaCoP system. The subsystem, which
is described in earlier work [29], is modeled after the feasible/in-
feasible 2-population GA (FI-2pop), developed by Kimbrough
et al. [30]. The FI-2pop consists of two populations which are
evolved in parallel, one labeled the “feasible population,” which
contains all the individuals that satisfy the constraints of the
problem domain, while the other is referred to as the “infeasible
population,” which contains those individuals that do not satisfy
the constraints. In our case, the feasible population contains all
the levels that satisfy the constraints of the game in question as

well as those individuals that can be repaired by the Tier 1 con-
straint solver so that they do not violate any constraints. The in-
dividuals which cannot be repaired, or which violate constraints
that cannot be expressed in the terms of the Tier 1 subsystem,
are placed in the infeasible population.

Whereas the feasible population is evolved according to our
primary fitness function, that is, by the rhythm-group model
of fun, the infeasible population is evolved according to a
fitness function which seeks only to satisfy the still-violated
constraints. This is done with a measurement of the degree to
which a given level violates the set of constraints. By min-
imizing this function, levels ultimately reach a state where
they violate no constraints, at which point they can be moved
back into the feasible population. Because Tier 2 constraints
are enforced through a fitness function, they can express any
arbitrary, global constraint on a level design; they do not need
to be limited to spatial relationships between individual level
elements. An example of a global property that is difficult to
express in terms of local constraints is connectivity—ensuring
there is a traversable path from the beginning to the end of a
level.

D. Summary

This architecture maintains all the advantages of the
top—down approach. It allows the level design criteria to be
described declaratively, irrespective of the actual generative
implementation. Procedural generative processes are restricted
to the reification of the DEs (through the genotype to pheno-
type mapping process) and our architecture provides a clear
separation between the mechanics of the level creation and
the evaluation process. Furthermore, this system is capable of
respecting the designs provided by human content creators; the
DEs could be provided by a designer through their usual level
design editor and given special status in the system. The GA
treats these DEs as fixed and immutable and does not alter them
under mutation or crossover. Likewise, the CS system gives a
higher weighting to the variables corresponding to the DEs that
are provided by the human designer when altering their values,
preferring to mutate automatically generated DEs provided
by the GA than to change the DEs specifically placed by the
human. Essentially, this amounts to a system that works around
and with a human designer to “fill in the blanks,” upsetting as
little as possible both the guidance of the rhythm-group model
and, more importantly, the designs provided by the human.

IV. MARIO

In this section, we outline a concrete application of the model
and generative framework in the context of an actual game,
namely the 2-D platformer Super Mario Bros. First, we de-
scribe a challenge function for this game in order to apply our
rhythm-group model. We present a way to model this design
task in terms of DEs and constraints, and discuss the results.

The system produces levels that are directly playable. The im-
plementation used is an open source clone of Super Mario Bros.
called Infinite Mario. It is written by Markus Persson in the Java
language and is currently used in several video game research
problems, including the Mario AI Championship, where it func-
tions as a platform for testing the performance of various Al

238

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

Fig. 6. Segments from final levels with extended set of DEs. (a) Generation: 151. (b) Generation: 138.

and can therefore be developed and tested independently. As
well, though the number of constraints between DEs could in-
crease exponentially as more are specified, many of the com-
pound DEs are subject to identical constraints. For example,
most of the DEs form a set of elements whose members cannot
overlap with each other. Thus, it is not necessary to manually
specify pairwise constraints between each DE.

3) Constraints: We define, in addition to the DEs, a number
of constraints that express the requirements for a playable In-
finite Mario level. As previously noted, each constraint in our
system can specify a method for penalizing levels proportion-
ally to how greatly they violate the constraint.

 require-exactly(n, type). This constraint specifies the de-
sired number of certain types of design elements to be
present in the levels. As a penalty, it returns the absolute
difference between the counted number of instances of type
and the desired amount n.

 require-at-least(n, type). This function penalizes levels
that contain less than n of a given type, returning 0 if n >
type and returning type-n otherwise.

 require-at-most(n, type). This function penalizes levels
that contain more than n of a given type, returning 0 if n
< type and returning n-type otherwise.

* require-no-overlap(typer, types, . ..). This function states
that the specified types are not to overlap in the pheno-
type. It is, therefore, only relevant for design elements that
contain a notion of location and extent. In the present ap-
plication, we specify that pipes, stairs, enemies, and holes
should not overlap one another. As a penalty, the number
of overlapping elements is returned.

 require-overlap(type;, types). This function specifies that
type; must overlap types, though type; need not neces-
sarily overlap type;. We use this function to require that
platforms must be positioned above holes. The number of
type; elements that do not overlap with a type, element is
returned as a penalty.

« traversable(). This function is to ensure that a player can
successfully traverse the level, meaning that there are no
jumps that are too high or too far for the player to reach.
This is determined using a greedy search between level el-
ements. The penalty is the number of elements from which
there is no subsequent platform within a specified range,
that is, the number of places at which a player could get
stuck.

All the previous functions are specified such that a value of
zero reflects a satisfied constraint and a positive value denotes
how severely a constraint is violated. Therefore, any individual
level that is given a score of zero by all of the above functions
is considered a feasible solution and is moved into the feasible
population for further optimization. The feasible population is
evaluated using our generic model of challenge-based fun. We
adapt this model to 2-D platformers by providing a method
for estimating challenge at any given point in a level. This is
done by a function that returns a challenge value for each jump
required between platforms, with difficult jumps being rated
higher, and a set constant for each enemy in the level.

With no pressing concern for efficiency, we choose to set the
mutation rate to 10% of individuals per generation and to gen-
erate the rest via crossover, using tournament selection of size 3.
Finally, following the convention of Kimbrough [30], we limit
the sizes of the infeasible and feasible populations to 50. Our
stopping criterion is reached if the fitness of the levels does not
improve for 20 generations. The evolutionary runs took between
two to ten minutes on a midrange dual-core PC.

Fig. 6 depicts segments from some of the resulting levels.
Figs. 7 and 8 depict levels generated with the model parameter
M fixed at 6.0. These levels were the result of contiguous runs of
the system (i.e., they were not singled out according to any sub-
jective criteria). Fig. 9 demonstrates the effect of varying M . By
doing so, levels are created such that the most difficult portions
are located where M is the highest, in this case, in the center of
the level. However, some challenge is still present throughout
the level, and the player is provided with constant engagement.
This ability to alter the model’s parameters offers designers a
unique, high-level way to influence the system’s output, and il-
lustrates some of the variety of design allowed by the system
and the control that is afforded to the user.

Fig. 10 depicts another avenue for high-level control over the
system output. In this case, a constraint was specified that there
should be no Hole DEs in the level genotypes. The system is
able to produce rhythm-group structures while observing this
externally imposed design requirement. By restricting the pres-
ence of certain level elements in this manner, we can ensure that
levels do not all contain the same proportion of level elements
and can therefore maintain diversity in the system’s output.

Fig. 11 demonstrates the potential for our system to allow for
certain portions of the level to be directly authored by human
designers. A small segment of a level is designed by hand and

SORENSON et al.: A GENERIC APPROACH TO CHALLENGE MODELING FOR THE PROCEDURAL CREATION OF VIDEO GAME LEVELS

239

Fig. 10. Fixed M, with no Hole DEs permitted. Generation 202, fitness 11.50.

00
00

==
Q)= =
W =

Fig. 11. The evolutionary system adds content surrounding the human-speci-
fied portion. Notice the highly challenging portions on either end of the rela-
tively simple middle section. (a) Hand-specified design. (b) Automatically gen-
erated content added.

(b)

converted to its DE representation. This translation is always
possible for Infinite Mario, as every basic level component has
a corresponding DE. This translated portion is fixed in every
genotype of the evolutionary population and cannot be altered
by any crossover or mutation operators. Otherwise, the manu-
ally created portion is internally treated the same as the gen-
erated segment of the level and is subjected to the same con-
straints and fitness function. For this reason, the system is able
to integrate human and artificial designs together in a manner
that exhibits rhythm groups.

C. Mario Al Championship

This system was entered into the 2010 Mario AI Champi-
onship Level Generation Track, which was held at the 2010

IEEE Conference on Computational Intelligence and Games,
Copenhagen, Denmark. Conference participants were invited
to play levels generated by the various systems and to evaluate
them according to how fun they were. The contest was arranged
so that the systems had to produce levels that adhered to cer-
tain compositional requirements. For example, levels might be
required to have four gaps and three Shelled Koopas. This re-
quirement was put in place to discourage cheating through the
use of systems that could merely return levels that were pre-de-
signed by hand. To observe this rule, our system translated the
composition requirements into constraints.

Fifteen participants took part in the event, and our system
placed third out of six. This is an encouraging result, as our
system, guided by a generic fitness function, was able to rank
competitively with systems designed specifically for this par-
ticular game.

D. Discussion

One possible shortcoming of our approach is that the rhythm-
group model cannot express diversity; there is no evolutionary
advantage to producing rhythm groups that contain a mixture of
different elements, as opposed to creating levels consisting of a
single kind of element. For example, it is possible for a level
containing only Koopa enemies to have the same rhythm-group
configuration, and thus, the same fitness value, as a level con-
taining a mixture of enemies and holes. This type of monoto-
nous design does not seem to occur in practice because of the
stochastic nature of the GA. On the other hand, this restricted di-
versity in a level’s design might be considered desirable. In this
case, the constraint system can be used to influence the variety of

240 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

the level designs by enforcing a maximum or minimum amount
of certain game elements. For example, it is common to intro-
duce certain enemies only in later levels of a game; in this case
the designer can set a constraint specifying that levels contain no
DEs of this type. Fig. 10 depicts how this high-level control can
be used to create a level with no holes. This kind of high-level
control can ensure that the system produces levels that do not
resemble each other but instead differ greatly in terms of com-
position and appearance.

Another potential criticism might be placed against the com-
plexity of some of the design elements. Indeed, reifying some
structures, such as staircases, requires an imperative set of con-
struction instructions to be specified. This type of bottom—up,
procedural approach may seem out of place in a framework that
purportedly minimizes such low-level, game-specific code. It is
important to emphasize that though the method to build a stair-
case is, in itself, a bottom—up, rule-based procedure, the instruc-
tions for doing so are parameterized: the overarching system can
manipulate it on a high level by altering its height, width, and
position, in the same manner as any other level element. In this
sense, each DE is treated as a black box. This policy ensures that
all the procedural knowledge contained within the DEs is insu-
lated not only from the high-level system, but also from other
DEs; each basic level element can be developed and tested in-
dependently. Ultimately, we do not claim to completely elim-
inate all traces of imperative generative techniques; rather we
recognize that a certain amount of procedural specification is
necessary but restrict the scope of such techniques, and subject
them to a easy manipulation by the high-level system. Com-
plex components can be seamlessly used in conjunction with
the rhythm-group fitness function and constraint solver in ex-
actly the same way as any other DE. This flexibility is not af-
forded by monolithic, rule-based production systems.

V. ZELDA

To support our claims of generality, we present an applica-
tion of the generative system to a different game genre. In this
section, we target game levels that consist of rooms and doors
arranged in a 2-D space and are viewed from an overhead per-
spective, as opposed to a side perspective as was the case in
the Infinite Mario levels. We do not develop the construction
process in as much detail as the previous example; instead of at-
tempting to generate levels of comparable quality to commercial
levels, we focus on generating levels that demonstrate a simple
yet essential aspect of the level design task. The purpose of this
simplification is to focus on the core problem of designing 2-D
levels, as opposed to 1-D designs. It proves significantly more
difficult to generate levels for this domain, but the fact that our
approach is still able to efficiently create feasible solutions that
exhibit a rhythm-group structure illustrates both our system’s
generality and its promise as a practically usable technique.

A. Game Background

Zelda is an action-adventure series developed and produced
by Nintendo, which centers on the adventures of Link in the
kingdom of Hyrule. In the course of a typical Zelda game, Link
must successfully overcome the challenges of several dungeons.

Each dungeon adheres to a recognizable pattern and consists of
an arrangement of rooms filled with enemies, collectible items,
and puzzles. For our purposes, we consider the top—down, 2-D
gameplay characteristic of the earlier Zelda games, most specif-
ically the original game: The Legend of Zelda [34]. Because
finding an optimized arrangement of rooms is considered a dif-
ficult challenge for heuristic searches, our initial attempts to
model this game involve significant simplifications: at this point
we only attempt to produce dungeon layouts and monster place-
ment and do not consider the puzzles, keys, and other aspects of
the game. However, promising results in the simplified domain
justify further experimentation.

B. Design Elements

The following DEs are sufficient to examine the problem of
2-D room layout as it relates to challenge dynamics.
* Room(x,y, w, h). A room of dimension w x h with its origin
at the point (X, y).
» Door(x, y). A door located at the point (X, y).
* Enemy(x, y). An enemy located at the point (X, y).

C. Challenge Metric

The challenge function is defined in terms of the enemies the
player faces as they move from room to room. Rooms can be
viewed as sets of the entities they contain, so given a player who
enters Room(t) at time ¢, the challenge at that point is defined as
the number of enemies in that room, or, more formally, ¢(¢) =
[{e € Room(t)}|.

This formulation inherently presupposes that the player’s
path through the rooms is fixed and that Room(t) represents
a single value for each point ¢{. We pick the shortest path
movement between the entrance point and the exit point as
the canonical path of the player through a given level. The
entrance and exit points are explicitly defined before evolution.
Certainly, this is a large simplification of the behavior a human
would actually exhibit when moving through a complex virtual
environment. However, our choice of shortest path can be jus-
tified by ensuring that the levels contain only a single, unique
sequence of connected rooms from start to finish. In levels such
as these, any path which does not double-back on itself will
be the shortest path. It proves to be simple to ensure that the
generated levels contain no multiple paths or dead-ends and
thus adhere to this linear topology.

D. Constraints

The Tier 1 constraints that can be solved in terms of a CS

formulation, are as follows.

* Room location and dimension values must be multiples of
30. This constraint is equivalent to snapping the rooms to
a coarse grid with cell sizes of 30 units, which simplifies
detecting the property of room adjacency.

» Doors must exist on room edges. This constraint ensures
doors do not exist, for example, in the center of a room.
Enforcing this constraint involves snapping each door to
its nearest wall segment.

» No overlap between rooms. Enforcing that rooms cannot
intersect one other is solved through the manipulation of
the shape and position of the rooms. This is an example

242 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

connectivity constraint render it virtually impossible to produce
a feasible level by chance alone. Indeed, there are a vastly
greater number of possible broken levels than feasible levels;
Compared to the Mario application, where 195 out of 1000
randomly generated levels prove to be feasible with no need
for further CS, the Zelda application produces no feasible
individuals at all from chance alone.

The minimal representation adopted in this context was likely
responsible for the high computational cost of evolving levels.
Level connectivity had to be attained through the use of two
different types of elements (doors and rooms, corresponding to
edges and nodes in graph terminology) aligned in a fragile con-
figuration. These difficulties were not present at all in the case
of Mario, where an empty level (consisting only of the floor,
from beginning to end) was still considered feasible. A Zelda
representation which treated doors as a dimension of a room DE
(for instance, as Boolean flags determining if there are doors on
certain sides of a room) would reduce the number of different
types of elements that would need to be aligned to achieve con-
nectivity, and therefore reduce the search space significantly.
Choices of representation greatly affect the scalability of gener-
ative processes, and future work must consider these ramifica-
tions in more detail.

However, it is not necessarily the number of different DEs and
the complexity of the challenge metric which predominantly in-
fluence the difficulty of generating levels for a given game; it ap-
pears that the nature of the constraints influences the difficulty
of generation to a far greater degree. For this reason, it is prob-
able that more DEs and a more precise challenge metric could
be developed to allow the system to generate more interesting
Zelda levels, so long as the connectivity constraints do not be-
come more difficult to satisfy. There is likely a reasonable flex-
ibility within the design space provided by the existing design
constraints of single-path connectivity. It is even possible that
single-path connectedness is a more fragile, and hence a more
difficult, constraint to satisfy than constraints over multiply con-
nected spaces, and levels that admit multiple paths might prove
to be easier to generate.

In any case, the results of this intentionally simple design con-
text provide evidence that this generative system can be success-
fully applied to contexts quite different than 2-D platformers.
This application is not intended to demonstrate the maximal
amount of detail and complexity that can be produced by the
system (which was demonstrated in the Mario application) but
rather to determine the system’s ability to satisfy difficult design
constraints in a different game genre. Indeed, by using exactly
the same fitness function and genetic operators (with some pa-
rameter adjustments) viable levels were generated in a signifi-
cantly different context while maintaining all the advantages of
the top—down approach: the model offers high-level parameters
which serve to alter the layout of the rooms to provide higher
or lower levels of difficulty, and the system is still able to in-
corporate human-authored content by adapting the output sur-
rounding fixed components specified by a human designer.

VI. FUTURE WORK

Many avenues for future research are readily apparent. Due to
the initial success of the Zelda context, it would seem promising

that a more comprehensive set of DEs, such as the ones defined
for Mario, could lead to levels more closely resembling those
from the actual game. More constraints could be considered to
model the puzzle aspects of the game. For example, keys must
be attained to access various parts of the dungeons, which pro-
vide the player with various items needed to successfully de-
feat the dungeon’s final boss. These complex constraints seem
well suited to being specified as Tier 2 constraints, in a manner
similar to the connectivity constraint. As well, it would be in-
teresting to consider levels containing multiple paths, instead of
requiring singly-connected paths. It might be possible to allow
multiple paths by aggregating together the results of running
each possible path independently, via the mean, minimum, or
maximum output from the model. As well, many of these con-
straints can be expressed in terms of graph grammars, and gen-
erative grammars have been applied to adventure game mis-
sion creation by Dormans [36]. As generative grammars can be
evolved with GAs, it would be interesting to see if such an ap-
proach could be combined with the model of player enjoyment
presented in our work.

It is also possible that this approach could be generalized
to even more types of games. Arcade games such as Breakout
[37] and Space Invaders [38] could have the arrangement of
blocks and enemies determined by the rhythm-group model.
As well, layouts for first-person shooters could be generated
in a manner very similar to the dungeon layouts as seen in
the Zelda application. This could prove especially lucrative
for large, open world games where a large amount of content
is required.

It would also be desirable to further test the model. Though
we have had the system’s output indirectly evaluated at the
Mario Al Challenge, it would be interesting to see if there
was any discernible correlation between what players found
fun, and what the model predicted as fun. Similarly, one could
attempt to train the model not on positive examples taken from
commercial games, as was the case in this paper, but rather
to train the model to learn a particular player’s preference,
as witnessed by their subjective evaluation of play. There is
also research in the automatic detection of player frustration
in games [39], as well as on statistical methods for modeling
player preferences [11], [40]-[42], and it would seem that those
efforts could be fruitfully combined with the current model.

Finally, because level generation takes on the order of tens
of minutes, it is not currently well suited to online level gener-
ation, where content is created in real time as the game is being
played. It is possible the generation time could be reduced by
creating smaller portions of game levels at a time instead of cre-
ating entire levels, as is currently the case. Even so, it may be
feasible to generate levels on the client’s system, even if they
are not immediately available. For instance, should a player be
found to be failing too often, the system could begin generating
a new level in the background, and switch the current level out
for the easier one when it is finished. If these background gen-
eration processes were seeded with initial populations of levels
with relatively high quality, it is quite possible that acceptable
variations for different model parameters could be found much
more quickly than the current method of constructing new levels
from scratch.

SORENSON et al.: A GENERIC APPROACH TO CHALLENGE MODELING FOR THE PROCEDURAL CREATION OF VIDEO GAME LEVELS 243

VII. CONCLUSION

We have demonstrated an approach to the generation of video
game levels that is founded on an explicit model of the relation-
ship between challenge and fun. The model is based on the no-
tion of rhythm groups, which are alternating periods of high and
low challenge that present a player with an engaging gameplay
experience. It identifies fun as a function of challenge with an
“inverted-U” shape inspired by the Yerkes—Dodson law, where
a particular rhythm group is deemed fun if it is neither too dif-
ficult nor too easy. The model’s effectiveness was evaluated by
employing it in a classification task, where it was able to identify
levels from the original Super Mario Bros. with high accuracy.

We have also demonstrated the generality of the approach
in applying the model to two different games. It was relatively
straightforward in both cases to represent the design problem in
terms of a set basic design building blocks, referred to as DEs,
and a collection of geometric constraints. We also noted that the
size and complexity of the DE set does not necessarily mean
that levels will be more difficult to generate. Although the Zelda
formulation had a much simpler representation, it proved, by far,
more challenging to produce feasible levels in this context.

Finally, our model provides parameters that correspond di-
rectly to intuitive concepts. In particular, the parameter M cor-
responds to the skill of the player, and can be adjusted by the
designer to create levels with various challenge profiles. This
high-level control is not typically offered by bottom—up, rule-
based approaches where the relationship between the genera-
tive parameters and the final output is not always clear. Further-
more, humans can directly specify certain portions of the level
by hand, which are then evaluated by the model in the same
manner as the automatically generated content. This results in
the rhythm-group structure adapting itself around the manually
created portion of the level; easy portions are surrounded by dif-
ficult sections, whereas simple stretches are surrounded by areas
of high challenge. This natural adaptation to externally provided
content is afforded by the top—down design of the system. It is
our hope that by modeling challenge dynamics in a high-level,
explicit manner will not only improve the quality of procedu-
rally generated content, but also contribute toward further re-
search in the analysis and understanding of the nature of fun in
video games.

REFERENCES

[1] J. Togelius, G. Yannakakis, K. Stanley, and C. Browne, “Search-based
procedural content generation,” in Applications of Evolutionary Com-
putation, ser. Lecture Notes in Computer Science. Berlin, Germany:
Springer-Verlag, 2010, vol. 6024, pp. 141-150 [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-12239-2 15

[2] M. Toy, G. Wichman, K. Arnold, and J. Lane, “Artificial intelligence
design,” 1983, Rogue.

[3] The NetHack DevTeam, Nethack, 2009 [Online]. Available:
http://www.nethack.org/

[4] P. Rivest, Far Cry 2, Ubisoft, 2008.

[5] The Freeciv Developers, Freeciv, 2010 [Online]. Available:
http://freeciv.wikia.com/wiki/Main_Page

[6] C. Remo, “MIGS: Far cry 2’s guay on the importance of pro-
cedural content,” Gamasutra, Nov. 2008 [Online]. Available:
http://www.gamasutra.com/php-bin/news_index.php?story=21165

[7] C. Browne, “Automatic generation and evaluation of recombination
games,” Ph.D. dissertation, Comput. Sci. Dept., Queensland Univ.
Technol., Brisbane, QId., Australia, 2008.

[8] J. Togelius and J. Schmidhuber, “An experiment in automatic game de-
sign,” in Proc. IEEE Symp. Comput. Intell. Games, 2008, pp. 111-118
[Online]. Available: http://togelius.blogspot.com/2008/12/auto-
matic-game-design.html

[9] E. J. Hastings, R. K. Guha, and K. O. Stanley, “Interactive evolution
of particle systems for computer graphics and animation,” IEEE Trans.
Evol. Comput., vol. 13, no. 2, pp. 418-432, Apr. 2009.

[10] G. Smith, J. Whitehead, and M. Mateas, “Tanagra: A mixed-initiative
level design tool,” in Proc. 5th Int. Conf. Found. Digit. Games, New
York, 2010, pp. 209-216.

[11] N.Shaker, G. Yannakakis, and J. Togelius, “Towards automatic person-
alized content generation for platform games,” in Proc. Al Interactive
Digit. Entertain. Conf., 2010, pp. 63—68.

[12] R. Hunicke, M. LeBlanc, and R. Zubek, “MDA: A formal approach to
game design and game research,” in Proc. 19th Nat. Conf. Artif. Intell.
Challenges Game Al Workshop, 2004, pp. 1-5.

[13] T. W. Malone, “What makes things fun to learn? Heuristics for de-
signing instructional computer games,” in Proc. 3rd ACM SIGSMALL
Symp./1st SIGPC Symp. Small Syst., New York, 1980, pp. 162-169
[Online]. Available: http://dx.doi.org/10.1145/800088.802839

[14] M. J. Apter, “A structural-phenomenology of play,” in Adult Play: A
Reversal Theory Approach, J. H. Kerr and M. J. Apter, Eds. Ams-
terdam, The Netherlands: Swets and Zeitlinger, 1991, pp. 18-20.

[15] P.-A. Garneau, “Fourteen forms of fun,” Gamasutra, Oct. 12, 2001.

[16] M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience.
New York: Harper Perennial, March 1991.

[17] P. Sweetser and P. Wyeth, “Gameflow: A model for evaluating player
enjoyment in games,” Comput. Entertain., vol. 3, no. 3, p. 3, 2005.

[18] R. Koster, Theory of Fun for Game Design. Sebastopol, CA:
Paraglyph Press, Nov. 2004.

[19] K. Salen and E. Zimmerman, Rules of Play: Game Design Fundamen-
tals. Cambridge, MA: MIT Press, Oct. 2003.

[20] R. M. Yerkes and J. D. Dodson, “The relation of strength of stimulus
to rapidity of habit-formation,” J. Comparat. Neurol. Psychol., vol. 18,
pp. 459482, 1908.

[21] P. Piselli, M. Claypool, and J. Doyle, “Relating cognitive models of
computer games to user evaluations of entertainment,” in Proc. 4th Int.
Conf. Found. Digit. Games, 2009, pp. 153-160.

[22] G. Smith, M. Cha, and J. Whitehead, “A framework for analysis of
2D platformer levels,” in Proc. ACM SIGGRAPH Symp. Video Games,
2008, pp. 75-80.

[23] N. Sorenson and P. Pasquier, “The evolution of fun: Automatic level
design through challenge modeling,” in Proc. 1st Int. Conf. Comput.
Creativity, 2010, pp. 258-267.

[24] G. Smith, M. Treanor, J. Whitehead, and M. Mateas, “Rhythm-based
level generation for 2d platformers,” in Proc. 4th Int. Conf. Found.
Digit. Games, 2009, pp. 175-182.

[25] 1. Albert, Video Game Maps, Sep. 2010 [Online]. Available: http://ian-
albert.com/misc/gamemaps.php

[26] C. A. Coello Coello, “Theoretical and numerical constraint-handling
techniques used with evolutionary algorithms: A survey of the state of
the art,” Comput. Methods Appl. Mech. Eng., vol. 191, no. 11-12, pp.
1245-1287, Jan. 2002.

[27] G. R. Harik, “Learning gene linkage to efficiently solve problems of
bounded difficulty using genetic algorithms,” Ph.D. dissertation, Dept.
Comput. Sci. Eng., Univ. Michigan, Ann Arbor, MI, 1997.

[28] K. Kuchcinskiand R. Szymanek, JaCoP: Java Constraint Programming
Library, 2010 [Online]. Available: http://www.jacop.eu/

[29] N. Sorenson and P. Pasquier, “Towards a generic framework for au-
tomated video game level creation,” in Applications of Evolutionary
Computation. Berlin, Germany: Springer-Verlag, 2010, pp. 131-140.

[30] S. O. Kimbrough, M. Lu, D. H. Wood, and D.-J. Wu, “Exploring a
two-market genetic algorithm,” in Proc. Genetic Evol. Comput. Conf.,
2002, pp. 415-422.

[31] Newgrounds Inc., “Everything, by everyone,” 2010 [Online]. Avail-
able: http://www.newgrounds.com/

[32] K. Compton and M. Mateas, “Procedural level design for platform
games,” in Proc. 2nd Artif. Intell. Interactive Digit. Entertain. Conf.,
2006, pp. 109-111.

[33] S. Miyamoto, S. Hino, and T. Tezuka, Super Mario World, Nintendo,
1990.

[34] S. Miyamoto, T. Nakago, and T. Tezuka, The Legend of Zelda, Nin-
tendo, 1986.

[35] M. Tomassini, “Island models,” in Spatially Structured Evolutionary
Algorithms, ser. Natural Computing, G. Rozenberg, T. Bick, J.
N. Kok, H. P. Spaink, and A. E. Eiben, Eds. Berlin, Germany:
Springer-Verlag, 2005, pp. 11-18.

244

(36]

[37]
(38]
(39]

[40]

[41]

[42]

IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND Al IN GAMES, VOL. 3, NO. 3, SEPTEMBER 2011

J. Dormans, “Adventures in leV design: Generating missions and Philippe Pasquier studied computer science and
spaces for action adventure games,”HAroc. Workshop Procedural cognitive sciences in Europe, receiving the B.Sc.
Content Generat. Gameg2010, pp. 1:1-1:8 [Online]. Available: degree from the Université catholique de Louvain
http://doi.acm.org/10.1145/1814256.1814257 (UCL), Belgium, in 1998 and the M.Sc. degree from
N. Bushnell, S. Bristow, and S. WozniaBreakouf Atari, 1976. Nantes Science University, Nantes, France, in 1999.
T. Nishikado,Space InvaderdMidway, 1978. He then received the Ph.D. in datial intelligence

R. Hunicke and V. Chapman, “Al for dynamic &ulty adjustment from Laval University, Sillery, QC, Canada, in 2005.
in games,” inProc. Challenges in Game Al Workshop/19th Nat. Conf. He joined the School of Interactive Arts and
Artif. Intell., 2004, pp. 91-96 [Online]. Available: http://www.cs.north- Technology, Simon Fraser University, Surrey, BC,
western.edu/~hunie{pubs/Hamlet.pdf Canada, in January 2008, as an Assistant Professor.
G. Yannakakis and J. Hallam, “Towards capturing and enhancing en- He is both a scientist specialized in &xial intelli-

tertainment in computer games,” Proceedings of the 4th Hellenic gence and a multidisciplinary artist. As a scientist, his work has focused on the
Conference on Artcial Intelligence ser. Lecture Notes in Afitcial development of models and tools for endowing machines with autonomous, in-
Intelligence. Berlin, Germany: Springer-Verlag, 2006, vol. 3955, pgelligent, or creative behavior. Corttritions vary from thetical research on
432-442. agents and multiagent systems to applied research in computational creativity.
C. Pedersen, J. Togelius, and G. Yannakakis, “Modeling player eAs an artist, he has been acting as a performer, sound designer, composer,
perience in Super Mario Bros,” iRroc. IEEE Symp. Comput. Intell. producer, jury, committee member, amdther in many different contexts. He
Games Sep. 2009, pp. 132-139. is serving or has served as a member or administrator of several artistic collec-
M. Jennings-Teats, G. Smith, and N. Wardrip-Fruin, “Polymorph: Dytives (Robonom, Phylm, MIJI), art centers (Avatar, Bus Gallery) and artistic
namic difculty adjustment through level generation,”Bmoc. Work- organizations (P: Media art, Machinegancouver New Music). His work has
shop Procedural Content Generat. Game810, pp. 11:1-11:4 [On- been shown internationally and supported by more than 20 detemticultural
line]. Available: http://doi.acm.org/10.1145/1814256.1814267 institutions including the National Sciences and Engineering Research Council,
the Canadian Council for the Arts, the French Ministére de la Culture et de la
Communication, the Australian Research Council and the Australian Council
for the Arts.

Steve DiPaolareceived the M.A. degree from New
York Institute of Technology (NYIT), New York, in
1991 and the Ph.D. degree from the University of
British Columbia, Vancouver, BC, Canada, in 2011.
Active as an artist and a scientist, he is the Director
of the Cognitive Science Program, Simon Fraser Uni-
versity (SFU), Surrey, BC, Canada, and leads the iVi-

Nathan Sorensonis currently working towards the zLab, a research lab that strives to make computa-
M.S. degree at the School of Interactive Arts and tional systems bend more to the human experience
Technology, Simon Fraser University, Vancouver, by incorporating biological, cognitive, and behavior
BC, Canada. knowledge models. Much of the labs work is cre-

With his background in mathematics and computeating computation models of very human ideals such as expression, emotion,
science, he researches the application of computiaehavior, and creativity. He is most knovior his Al-based computational cre-
tional intelligence to problems that typically demandativity and 3-D facial expgssion systems. He came to SFU from Stanford Uni-
human creativity. Having worked as a research proversity and before that NYIT Computer Graphics Lab, an early pioneering lab
grammer on educational “serious games” in conjuncin high-end graphics techniques. He has held leadership positions at Electronic
tion with the University of Calgary and as an inde-Arts, Saatchi Innovation and consulted for HP, Macromedia, and the Institute for
pendent video game developer, he is interested in athe Future. His computer-based art has been exhibited internationally including

vancing procedural content creatiopsgems to enable smaller developmenthe AIR and Tibor de Nagy galleries in New York City, Tenderpixel Gallery in
groups to produce rich, interactive environments. His thesis focuses on forrhahdon, U.K., and Cambridge University’s Kings Art Centre, Cambridge, U.K.
models of fun in video games and automated level design. In addition to Aike work has also been exhibited in major museums, including the Whitney
work on content creation for games, he also works to employ genetic algorithMsseum, the MIT Museum, and the Smithsonian. His science work has been
in the creation of art by developing tools for graphic designers to interactivghublished in over 50 peer-reviewed saierpublications and showcased in the
“breed” procedural, vector-based designs. journal Nature

