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ABSTRACT

We propose  a  new machine-learning  framework  called 
the  Hierarchical  Sequential  Memory  for  Music,  or 
HSMM. The HSMM is an adaptation of the Hierarchical 
Temporal Memory (HTM) framework, designed to make 
it better suited to musical applications. The HSMM is an 
online  learner,  capable  of  recognition,  generation,  con-
tinuation, and completion of musical structures.

1. INTRODUCTION

In our previous work on the MusicDB [10] we outlined a 
system inspired by David Cope's notion of “music recom-
binance” [1]. The design used Cope's “SPEAC” system 
of structural analysis [1] to build hierarchies of musical 
objects.  It  was  similar  to  existing music  representation 
models [7, 9, 13], in that it emphasized the construction 
of hierarchies in which the objects at each consecutively 
higher  level  demonstrated  increasing  “temporal  invari-
ance” [5]—i.e., an “S” phrase in SPEAC analysis, and a 
"head" in the Generative Theory of Tonal Music [9], both 
use  singular  names  at  higher  levels  to  represent  se-
quences of musical events at lower levels.

Other approaches to learning musical structure include 
neural  network  models  [8],  recurrent  neural  network 
models  (RNNs)  [11],  RNNs  with  Long  Short-Term 
Memory [3], Markov-based models [12, 14], and statist-
ical models [2]. Many of these approaches have achieved 
high degrees of success, particularly in modeling melodic 
and/or homophonic music. With the HSMM we hope to 
extend such approaches by enabling a single system to 
represent  melody,  harmony,  homophony,  and  various 
contrapuntal formations, with little or no explicit a priori  
modeling of musical "rules"—the HSMM will learn only 
by observing musical input. Further, because the HSMM 
is a cognitive model,  it  can be used to exploit  musical 
knowledge, in real time, in a variety of interesting and in-
teractive ways.

2. BACKGROUND: THE HTM FRAMEWORK

In his book “On Intelligence”, Jeff Hawkins proposes a 
“top-down”  model  of  the  human  neocortex,  called  the 
“Memory Prediction Framework” (MPF) [6]. The model 
is founded on the notion that intelligence arises through 
the interaction of perceptions and predictions; the percep-
tion of sensory phenomena leads to the formation of pre-
dictions,  which in  turn  guide  action.  When predictions 
fail  to  match learned  expectations,  new predictions  are 
formed, resulting in revised action. The MPF, as realized 
computationally in the HTM [4, 5], operates under the as-

sumption of two fundamental ideas: 1) that memories are 
hierarchically structured, and 2) that higher levels of this 
structure show increasing temporal invariance.

The HTM is a type of Bayesian network, and is best 
described as a memory system that can be used to discov-
er or infer “causes” in the world, to make predictions, and 
to direct action. Each node has two main processing mod-
ules, a Spatial Pooler (SP) for storing unique “spatial pat-
terns” (discrete data representations expressed as single 
vectors) and a Temporal Pooler (TP) for storing temporal 
groupings of such patterns.

The processing  in an HTM occurs  in two phases:  a 
“bottom-up” classification  phase,  and a “top-down” re-
cognition, prediction, and/or generation phase. Learning 
is a bottom-up process, involving the storage of discrete 
vector  representations  in  the  SP,  and  the  clustering  of 
such vectors into “temporal groups” [4], or variable-order 
Markov  chains,  in  the  TP.  A node's  learned  Markov 
chains  thus represent  temporal  structure  in the training 
data. As information flows up the hierarchy, beliefs about 
the  identity  of  the  discrete  input  representations  are 
formed in each node's SP, and beliefs about the member-
ship of those representations in each of the stored Markov 
chains are formed in the TP. Since the model is hierarch-
ical, higher-level nodes store invariant representations of 
lower-level states, leading to the formation of high-level 
spatio-temporal abstractions, or “concepts.”

A simplified representation of HTM processing is giv-
en in Figure 1. Here we see a 2-level hierarchy with two 

nodes at L1 and one node at L2. This HTM has already 
received some training, so that each L1 node has stored 
four spatial patterns and two Markov chains, while the L2 
node has  stored  three  spatial  patterns  and  two Markov 
chains. There are two input patterns,  p1 and p2. It can be 
seen that p1 corresponds to pattern 4 of Node 1, and that 
pattern  4  of  Node 1 is  a  member  of  Markov chain  b. 
When presented with p1, the node identifies pattern 4 as 
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Figure 1. Simplified HTM processing.



the stored pattern most similar to p1, calculates the mem-
bership of pattern 4 in each of the stored Markov chains, 
and outputs the vector [0,  1], indicating the absence of 
belief that p1 is a member of Markov chain a, and the cer-
tainty that p1 is a member of Markov chain b.

It can also be seen from Figure 1 that the outputs of 
the children in hierarchy are concatenated to form the in-
puts to the parent. The SP of node 3 thus treats the con-
catenated outputs of nodes 1 and 2 as a discrete repres-
entation of their temporal state at a given moment—i.e., 
time is  ‘frozen’ by  the  parent  node's  SP.  Node  3  then 
handles  its  internal  processing  in  essentially  the  same 
manner as nodes 1 and 2. 

The dotted lines  indicate  the top-down processes  by 
which discrete state representations  can be extracted or 
inferred from the stored Markov chains, and passed down 
the network. Top-down processing can be used to support 
the recognition of inputs patterns, to make predictions, or 
to generate output.

3. MOTIVATIONS BEHIND THE HSMM

Our interest in the HTM as a model for representing mu-
sical knowledge derives from its potential to build spatio-
temporal  hierarchies.  The current  HTM implementation 
from  Numenta  Inc.,  however,  is  focused  primarily  on 
visual pattern recognition [4, 5], and is currently incap-
able of learning the sort of high-level temporal structure 
found in music. This structure depends not only on the 
temporal proximity of input patterns, but also on the spe-
cific sequential order in which those patterns arrive. The 
HSMM treats  sequential  order  explicitly,  and  can  thus 
build detailed temporal hierarchies.

Another motivation behind the HSMM lies in the fact 
that the HTM is strictly an offline learner. For composi-
tional applications, we are interested in a system that can 
acquire  new knowledge  during  interaction,  and  exploit 
that  knowledge in  the compositional  process.  We have 
thus designed the HSMM with four primary functions in 
mind:

1) Recognition: The system should have a represent-
ation of the hierarchical structure of the music at 
any given time in a performance.

2) Generation: The system should be capable of 
generating stylistically integrated musical output.

3) Continuation: If a performance is stopped at a 
given point, the system should continue in a styl-
istically appropriate manner.

4) Pattern Completion: Given a degraded, or partial 
input representation, the system should provide a 
plausible completion of that input (i.e., by adding 
a missing note to a chord).

4. MUSIC REPRESENTATION

For the current study, we are working with standard MIDI 
files from which note data is extracted and formatted into 
three  10-member  vectors:  one  for  pitch  data,  one  for 
rhythmic data, and one for velocity data. The incoming 
music  is  first  pooled  into  structures  similar  to  Cope’s 
“Groups”  [1]—vertical  ‘slices’ of  music  containing  the 
total  set  of  unique  pitches  at  a  given  moment.  A new 
Group  is  created  every  time  the  harmonic  structure 
changes, as shown in Figure 2. The Groups are prepro-
cessed using a simple voice-separation algorithm, which 

divides  polyphonic  material  across  the  10  available 
voices in the vector representation. Group pitches are first 
sorted in ascending order, after which the voice separa-
tion  routine  follows  one  simple  rule:  tied  (sustained) 
notes must not switch voices.

Pitch  material  is  represented  using  inter-pitch  ratio 
[16],  calculated by converting the MIDI notes to hertz, 

and dividing the pitch at time t-1 by the pitch at time t. In 
order to avoid misleading values, as a result of calculat-
ing the ratio between a rest (pitch value 0.0) and a pitch, 
rests are omitted from the pitch representation, and the 
velocity representation is used to indicate when notes are 
active or inactive (see Figure 2).

It will be noted that velocity is not given using con-
ventional MIDI values, but is rather used as a flag to in-
dicate the state of a given voice in the Group. Positive 
values indicate onsets, negative values indicate sustained 
notes, and zeros indicate offsets. We have simplified the 
non-zero values to 1 and -1 in order to avoid attributing 
too much weight to note velocity in the training and in-
ference process. 

The rhythmic values used represent the times at which 
each voice undergoes a transition either from one pitch to 
another, or from a note-on to a note-off. We use the inter-
event time between such changes, and calculate the ratio 
between consecutive inter-event times, for each voice  n, 
according to the following:

interEventRatiot [n]= interEventTimet−1 [n]
interEventTime t[n ]

 (1)

The final representation for the HSMM will thus consist 
of one 10-member inter-pitch ratio vector, one 10-mem-
ber inter-event time ratio vector, and one 10-member ve-
locity flag vector.

5. HSMM LEARNING AND INFERENCE

Figure 3 shows a four-level HSMM hierarchy with inputs 
for pitch, rhythm, and velocity information, an “associ-
ation” node (L2) for making correlations between the L1 
outputs, and two upper-level  nodes for learning higher-
ordered temporal  structure.  The association  node at  L2 
provides  the  necessary  connectivity  between  pitch, 
rhythm, and velocity elements required for the identifica-
tion of musical “motives.” The upper-level nodes at L3 
and  L4  are  used  to  learn  high-order  musical  structure 
from the motives learned at L2.

Figure 2. Music representation for the HSMM.



5.1  Online Learning in the HSMM

Whereas the TP in the HTM builds Markov chains during 
its training phase, in the HSMM we focus simply on con-
structing discrete  sequences  from the series  of  patterns 
input to the node. As in the HTM, the patterns stored in 
the  SP will  be  referred  to  as  “coincidences.”  The  se-
quences stored by the TP will be referred to simply as 
“sequences.”

5.1.1 Learning and Inference in the Spatial Pooler

The objective of SP learning is to store unique input pat-
terns as coincidences, while the objective of SP inference 
is to classify input patterns according to the stored coin-
cidences. The algorithm used is given in Figure 4. As in 
the HTM, when a new input is received the SP checks the 
input against all stored coincidences,  C. The result is an 
SP output vector yt, calculated according to:

y t [i ]=e−d  p , C [i ] 2/ 2

,  for i=0  to ∣C∣−1  (2)
where d(p,C[i]) is the Euclidean distance from input p to 
coincidence C[i],  and σ  is a constant of the SP. The con-
stant  σ  is used to account for noise in the input, and is 
useful for handling rhythm vectors, where frequent fluc-
tuations of timing accuracy are expected. The output yt is 
a belief distribution over coincidences, in which a higher 
value indicates greater similarity between input pattern p 
and  stored  coincidence  C[i],  and  thus  greater  evidence 
that p should be classified as C[i]. If the similarity of p to 
all stored coincidences is less than the minumum allowed 
similarity, simThreshold, p is added as a new coincidence. 

In the event that a new coincidence is added, the al-
gorithm uses the value of  maxSimilarity—i.e., the belief 
in the coincidence most similar to input p—as the initial 
belief  value  when adding  the  new coincidence.  It  then 
normalizes yt in order to scale the new belief according to 
the belief over all stored coincidences. In order to decide 
whether a new coincidence is required at higher levels, 
we start by first determining whether the input pattern λ 
(see  Figure  1)  should  be  stored  as  a  new coincidence. 
This is simply a matter of checking the length of the  λ 
vector at time t against the length at time t-1. If the length 
has increased, we know that at least one of the children 
has learned a new representation in the current time step, 
and that a new coincidence must be added in order to ac-
count for the additional information. For each new coin-
cidence stored by the SP, a histogram called the  counts  
vector is updated. In the HTM, the update is an integer 
incrementation—a count of how many times the coincid-
ence has been seen during training. However, because the 

HSMM is an online learner, an integer incrementation is 
not appropriate, as it would lead to counts of vanishingly 
small proportions being assigned to new coincidences if 
the  system were  left  running for  long periods  of  time. 
Thus, in the HSMM, the counts vector is updated accord-
ing to the following:

inc=∣C∣× 0.01 (3)

countst [ topCoinct ]=countst−1 [topCoinct ]inc  (4)

counts t[ i ]=counts t[ i ]
1inc

, for i=0 to ∣counts∣−1  (5)

where C is the number of learned coincidences, inc is the 
incrementation  value,  and  topCoinct is  the  coincidence 
that rated as having the  maxSimilarity  (Figure 4) to the 
input. Because  counts  is regularly normalized, it repres-
ents a time-limited histogram in the HSMM.

SP inference above L1 is calculated as in the HTM, but 
we outline it here for the sake of clarity. At higher levels 
we want to calculate the probability that the new input λ 
should be  classified  as  one  of  the  stored  coincidences. 
When  the  node has  more  than  one  child,  we  consider 
each child’s contribution to the overall probability separ-
ately:

C=C 1∪...∪C M

=1∪...∪M

y t [i]=∏
j=1

M

max
k

C j [k , i]× j [ k ] ,  for i=0  to ∣C∣−1
 (6)

where M is the number of child nodes, C j  is the portion 
of coincidence vector k attributed1 to child j, and λj is the 
portion of  λ  attributed to child  j.  Figure 5 shows an ex-
ample calculation for a hypothetical SP with two stored 
coincidences.

p The current input pattern

C The table of stored coincidences

maxSimilarity The maximum similarity value found

simThreshold The minimum degree of similarity between 
input p and coincidence C[i] required for p 
to be classified as C[i]

unmatchedCoinc A count of the number of times input p was 
found to be insufficiently similar to all co-
incidences in C

    Set maxSimilarity to 0
    For each stored coincidence C[i] in C
      Calculate yt[i], given input p, according to Equation 2
      If yt[i] > maxSimilarity
        Set maxSimilarity to yt[i]
      If yt[i] < simThreshold
        Increment unmatchedCoinc count

    If unmatchedCoinc count = size of C
      add input p to stored coincidences C
      append maxSimilarity to end of yt vector
      normalize yt vector 

    Figure 4. Online SP learning and inference.

1Recall that when the node has more than one child, each 
coincidence will be a concatenation of child outputs.

        

Figure 3. A four-level HSMM hierarchy.



5.1.2 Learning in the Temporal Pooler

The objective  of  TP learning  is  to construct  sequences 
from the series of belief vectors (y) received from the SP. 
When a new input to the TP is received, the TP first cal-
culates the winning coincidence of yt:

topCoinc t= argmax
i

 y t [i ]  (7)

It then determines whether this coincidence has changed 
since  the  previous  time  step—i.e.,  whether  topCoinct 

equals  topCoinct-1—and stores the result in a flag called 
change.

The next  step is  to determine  whether  the transition 
from  topCoinct-1→ topCoinct exists  among  the  TP’s 
stored sequences.  To do this, we depart  from the HTM 
entirely, and use an algorithm we refer to as the Sequen-
cer algorithm. In the Sequencer algorithm, we consider 
two aspects of the relationship between  topCoinct and a 
given stored sequence,  Seqn: 1) the position of topCoinct 

in Seqn (zero if  topCoinct ∉ Seqn), referred to as the “se-
quencer state”, and 2) the cumulative slope formed by the 
history of sequencer states for Seqn. Thus, if Seqn is four 
coincidences  in  length,  and  each  successive  topCoinct 

matches each coincidence in Seqn, then the history of se-
quencer states will be the series: {1, 2, 3, 4}, with each 
transition having a slope of 1.0. We use a vector called 
seqState to store the sequencer states, and a vector called 
seqSlope to store the cumulative slope for each sequence, 
formed by the history of sequencer states.  The slope is 
calculated as follows:

seqSlope t [i ]= 1
seqState t[i ]−seqState t−1[i ]

 (8)

seqSlope t [i ]={seqSlope t−1[ i]−seqSlope t[i ] , i=1.0
seqSlope t−1[i ]−∣seqSlopet [i]∣, i≠1.0

 (9)

seqSlope t[i ]= 2
1e−seqSlopet [ i]

−1  (10)

where  seqStatet[i] indicates  the position of  topCoinct in 
sequence  i  (zero  if  non-member).  The sigmoid  scaling 
performed in Equation 10 helps to constrain the cumulat-
ive slope values. Figure 6 shows an example of using cu-
mulative sequence slopes to reveal the best sequence. 

At levels above L1, we only update the seqSlope vec-
tor when  change  = 1, in order to help the TP learn at a 
time scale appropriate to its level in the hierarchy. A node 
parameter,  slopeThresh, is used to determine the minim-
um slope required for the TP to pass onto the inference 
stage without adding a new sequence or extending an ex-
isting sequence. If the maximum value in seqSlope does 
not exceed the value of slopeThresh, then either a new se-
quence is created, or an existing sequence extended.

Generally, we allow only one occurrence of any given 
coincidence in a single sequence at all levels above L1, 
though any number of sequences may share that coincid-
ence. This is done to avoid building long sequences at the 
bottom of the hierarchy, thus dividing the construction of 
longer  sequences  across  the  different  levels.  We allow 
consecutive repetitions of coincidences at L1, but do not 
allow non-consecutive repetitions. This is a musical con-
sideration, given the frequent use of repetitions in music-
al language.

5.1.3 Inference in the Temporal Pooler

The objective of TP inference is to determine the likeli-
hood that  topCoinct is  a  member  of  a  given stored se-
quence. At each time step, the TP uses the counts vector, 
from the SP, to update a Conditional Probability Table, 
called the weights matrix, which indicates the probability 
of a specific coincidence occurring in a given sequence. 
The weights matrix is calculated as:

weights [i , j]=counts [ j ]×I i , j / ∑
i=1

k

counts [k ]×I i , j  (11)

     I
i , j
={1, C [ j] ∈ S [i ]

0, C [ j] ∉ S [i ]

where  C[j] is the  jth  stored coincidence and  S[i] is the  ith 

stored sequence.
The probabilities stored by the weights matrix are used 

during  TP inference,  and  also  when forming  top-down 
beliefs in the hierarchy, as introduced in Section 2. It is a 
row-normalized matrix  where rows represent  sequences 
and columns represent coincidences. Because the counts  
vector maintains its histogram of  topCoinct occurrences 
over a limited temporal window, the weights matrix in the 
HSMM is able to act as a form of short-term memory for 
the node. 

The  output  of  TP inference  is  the  bottom-up  belief 
vector  z,  which indicates  the degree  of  membership  of 
topCoinct  in each of the stored sequences. The argmax of 
z  thus identifies the sequence most strongly believed to 
be active, given topCoinct. To calculate z, we use a vari-
ant of the “sumProp” and “maxProp” algorithms used in 
the HTM [6],  which we refer  to as  pMaxProp.  The al-
gorithm uses the weights matrix to calculate a belief dis-
tribution over sequences, as follows:

z [i]=max
j=1

i

weights [i , j]× y [ j ]  (12)

An example run of the pMaxProp algorithm is given in 
Figure 7, using the coincidences and sequences from Fig-
ure  6.  Because  the  weights  matrix  in  the  HSMM is  a 

   Figure 6. Using seqSlope to find the best sequence.

              

                
   Figure 5. SP inference calculations above L1.



short-term  memory,  and  the  pMaxProp  algorithm  is  a 
“one-shot” inference, with no consideration of the previ-
ous time step, we combine the results of pMaxProp with 
the results of the Sequencer algorithm, to yield the final 
bottom-up belief vector:

zt [i ]=
zt [i] seqSlopet [i ]

2
 (13)

5.2  Belief Formation in an HSMM Node

The final belief vector to be calculated, a belief distribu-
tion over coincidences called BelC, represents the combin-
ation of the node's classification of a given input, and its 
prediction  regarding  that  input  in  the  current  temporal 
context. Thus, for every bottom-up input there is a top-
down, feedback response.  Bottom-up vector  representa-
tions passing between nodes are denoted with  λ,  while 
top-down, feedback representations are denoted with  π2. 
A schematic of node processing can be seen in Figure 8. 
The top-down, feedback calculations used in the HSMM 
are the same as those used in the HTM, but we outline 
them here for completeness.

The first step in processing the top-down message is to 
divide the top-down parent belief π by the node's bottom-
up belief λ (at the top of the hierarchy, the bottom-up be-
lief z is used for the top-down calculations):

' [i ]=[i] /  [i]  (14)
Next, the π’ vector is used to calculate the top-down be-
lief distribution over stored coincidences as:

y [i ]=max
Seq

i
∈S
weightsT [i , j ]×  ' [ j ]

 for i=0  to ∣C∣−1
 (15)

where weightsT[i,j] is the transposed  weights matrix, and 
y↓ is the top-down belief over coincidences, and S is the 
table of stored sequences. Figure 9 gives an example, as-
suming the coincidences and sequences from Figure 7. 

The BelC vector is then calculated as the product of the 
top-down (y↓) and bottom-up (y↑) belief distributions over 
coincidences:

BelC [i ]= y [i ]× y [i ]  (16)

This calculation ensures that the belief of the node is al-
ways based on the available evidence both from  above 
and below  the  node’s  position  in  the  hierarchy.  At all 
levels  above L1, the top-down output of  the node (the 
message sent to the children) is calculated using the BelC 

vector and the table of stored coincidences C:

[i ]=argmax
C [ i ]∈C

C [i ]× BelC [ j ]

for i=0  to ∣C∣−1
 (17)

2At the node level, the λ and z vectors are equivalent. The 
naming is intended to distinguish the between-node pro-
cesses from the within-node processes. 

This  calculation  ensures  that  each  child  portion  of  the 
top-down output is proportional to the belief in the node. 
In cases where the parent node has two or more children, 
the  π vector is divided into segments of length equal to 
the length of each child’s λ vector (i.e., reversing the con-
catenation of child messages used during bottom-up pro-
cessing). The various stages of top-down processing are 
illustrated on the right side of Figure 8.

One  extra  step,  in  support  of  TP  inference  in  the 
HSMM, is added that is not present in the HTM. In ac-
cordance with the ideas of the MPF, it seemed intuitively 
clear to us that predictions could be used locally in the TP 
to support the learning process by disambiguating SP in-
puts whenever possible.  With this in mind we added a 
calculation to the TP inference algorithm that biases the 
SP belief vector,  y, according to the state of the  change 
flag, and the current top-down inference over sequences. 
In cases where the sequence inferred by top-down pro-
cessing at time t-1 contains  topCoinct-1,  and change = 0, 
the belief value for  topCoinct-1 is strengthened. However, 
when change = 1, belief in the next coincidence in the in-
ferred sequence is strengthened. The algorithm is given in 
Figure 10. Thus, when the state of the node appears to be 
changing,  belief  is  biased slightly toward what is  most 
likely  to  occur,  whereas  when  the  state  appears  to  be 
stable, the most recent belief is assumed to be correct.

6. DISCUSSION AND CONCLUSION

The strength of the HSMM lies in its balancing of hier-
archical  interdependence  with node-level  independence. 
Each  node  learns  in  the  context  of  the  hierarchy  as  a 
whole, but also forms its own representations and beliefs 
over a particular level of musical structure. At L1, simple 
motivic patterns can be recognized and/or generated, and 
at the higher levels, larger musical structures like phrases, 
melodies, and sections can also be learned, classified, and 

              
Figure 9. Using the weights matrix to calculate the 
top-down belief over coincidences.

    Figure 7. The pMaxProp algorithm calculations.

    Figure 8. HSMM node processing.
.



generated. Further, since nodes above L1 all process in-
formation  in  an  identical  manner,  and  only  require  a 
single child, additional high-level nodes could be added, 
enabling the learning of higher levels of formal structure
—songs,  movements,  compositions.  Each  node  can  be 
monitored independently, and its state exploited for com-
positional,  analytical,  or  musicological  purposes.  Com-
position tools could be developed, offering various levels 
of  interactivity,  while  maintaining  stylistic  continuity 
with the user's  musical  language.  In the area of classic 
Music Information  Retrieval,  low levels  of  the HSMM 
could  be  used  to  identify  common  motivic  gestures 
among a given set of works, while higher levels could be 
used to recognize the music of individual composers, or 
to cluster a number of works by stylistic similarity. 

topSeqt-1 The sequence inferred by top-down processing

predCoinc The predicted coincidence

    For each coincidence c in topSeqt-1

       If topSeqt-1[c] equals topCoinct-1

          Set predCoinc to topSeqt-1[c+1]

    If change = 0
       y[topCoinct-1] = y[topCoinct-1] * 1.1
    else if change = 1
      y[predCoinc] = y[predCoinc] * 1.1

    Figure 10. Biasing the predicted coincidence.

The  HSMM  exploits  short-term  and  long-term 
memory structures, and uses an explicit sequencing mod-
el to build its temporal hierarchies, thus giving it the ca-
pacity to learn high-level temporal structure without the 
tree-like topologies required by HTM networks.

Tremendous progress has been made in the cognitive 
sciences and cognitive modeling, but such work has re-
mained largely unexplored by the computer music com-
munity, which has focused more on pure computer sci-
ence and signal processing. The HSMM offers a first step 
toward  the  development  and  exploitation  of  a  realistic 
cognitive model for the representation of musical know-
ledge,  and  opens  up a myriad  of  areas  for  exploration 
with regard to the associated cognitive behavior.

7. FUTURE WORK

A working prototype of the HSMM has been implemen-
ted, and initial tests have shown great promise. A future 
paper will cover the evaluation in detail, with an emphas-
is  on  exploiting  the  strengths  offered  by  the  cognitive 
model.

We  are  interested  in  exploring  alternative  distance 
metrics  for  the  L1  nodes—particularly  the  pitch  and 
rhythm nodes,  where  more  musically-grounded metrics 
may be effective. We are also interested in exploring dif-
ferent topologies for the hierarchy, in particular, topolo-
gies that isolate individual voices and allow the system to 
learn both independent monophonic hierarchies and asso-
ciative  polyphonic  hierarchies.  Along similar  lines,  we 
would like to explore the possibilities offered by state-
based gating of individual nodes in more complex hier-
archies, in order to simulate the cognitive phenomenon of 
attention direction. 
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