
Hierarchical Sequential Memory for Music: A Cognitive Model

James B. Maxwell Philippe Pasquier Arne Eigenfeldt
Simon Fraser University
jbmaxwel@sfu.ca

Simon Fraser University
pasquier@sfu.ca

Simon Fraser University
arne_e@sfu.ca

ABSTRACT

We propose a new machine-learning framework called
the Hierarchical Sequential Memory for Music, or
HSMM. The HSMM is an adaptation of the Hierarchical
Temporal Memory (HTM) framework, designed to make
it better suited to musical applications. The HSMM is an
online learner, capable of recognition, generation, con-
tinuation, and completion of musical structures.

1. INTRODUCTION

In our previous work on the MusicDB [10] we outlined a
system inspired by David Cope's notion of “music recom-
binance” [1]. The design used Cope's “SPEAC” system
of structural analysis [1] to build hierarchies of musical
objects. It was similar to existing music representation
models [7, 9, 13], in that it emphasized the construction
of hierarchies in which the objects at each consecutively
higher level demonstrated increasing “temporal invari-
ance” [5]—i.e., an “S” phrase in SPEAC analysis, and a
"head" in the Generative Theory of Tonal Music [9], both
use singular names at higher levels to represent se-
quences of musical events at lower levels.

Other approaches to learning musical structure include
neural network models [8], recurrent neural network
models (RNNs) [11], RNNs with Long Short-Term
Memory [3], Markov-based models [12, 14], and statist-
ical models [2]. Many of these approaches have achieved
high degrees of success, particularly in modeling melodic
and/or homophonic music. With the HSMM we hope to
extend such approaches by enabling a single system to
represent melody, harmony, homophony, and various
contrapuntal formations, with little or no explicit a priori
modeling of musical "rules"—the HSMM will learn only
by observing musical input. Further, because the HSMM
is a cognitive model, it can be used to exploit musical
knowledge, in real time, in a variety of interesting and in-
teractive ways.

2. BACKGROUND: THE HTM FRAMEWORK

In his book “On Intelligence”, Jeff Hawkins proposes a
“top-down” model of the human neocortex, called the
“Memory Prediction Framework” (MPF) [6]. The model
is founded on the notion that intelligence arises through
the interaction of perceptions and predictions; the percep-
tion of sensory phenomena leads to the formation of pre-
dictions, which in turn guide action. When predictions
fail to match learned expectations, new predictions are
formed, resulting in revised action. The MPF, as realized
computationally in the HTM [4, 5], operates under the as-

sumption of two fundamental ideas: 1) that memories are
hierarchically structured, and 2) that higher levels of this
structure show increasing temporal invariance.

The HTM is a type of Bayesian network, and is best
described as a memory system that can be used to discov-
er or infer “causes” in the world, to make predictions, and
to direct action. Each node has two main processing mod-
ules, a Spatial Pooler (SP) for storing unique “spatial pat-
terns” (discrete data representations expressed as single
vectors) and a Temporal Pooler (TP) for storing temporal
groupings of such patterns.

The processing in an HTM occurs in two phases: a
“bottom-up” classification phase, and a “top-down” re-
cognition, prediction, and/or generation phase. Learning
is a bottom-up process, involving the storage of discrete
vector representations in the SP, and the clustering of
such vectors into “temporal groups” [4], or variable-order
Markov chains, in the TP. A node's learned Markov
chains thus represent temporal structure in the training
data. As information flows up the hierarchy, beliefs about
the identity of the discrete input representations are
formed in each node's SP, and beliefs about the member-
ship of those representations in each of the stored Markov
chains are formed in the TP. Since the model is hierarch-
ical, higher-level nodes store invariant representations of
lower-level states, leading to the formation of high-level
spatio-temporal abstractions, or “concepts.”

A simplified representation of HTM processing is giv-
en in Figure 1. Here we see a 2-level hierarchy with two

nodes at L1 and one node at L2. This HTM has already
received some training, so that each L1 node has stored
four spatial patterns and two Markov chains, while the L2
node has stored three spatial patterns and two Markov
chains. There are two input patterns, p1 and p2. It can be
seen that p1 corresponds to pattern 4 of Node 1, and that
pattern 4 of Node 1 is a member of Markov chain b.
When presented with p1, the node identifies pattern 4 as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.

© 2009 International Society for Music Information Retrieval

Figure 1. Simplified HTM processing.

the stored pattern most similar to p1, calculates the mem-
bership of pattern 4 in each of the stored Markov chains,
and outputs the vector [0, 1], indicating the absence of
belief that p1 is a member of Markov chain a, and the cer-
tainty that p1 is a member of Markov chain b.

It can also be seen from Figure 1 that the outputs of
the children in hierarchy are concatenated to form the in-
puts to the parent. The SP of node 3 thus treats the con-
catenated outputs of nodes 1 and 2 as a discrete repres-
entation of their temporal state at a given moment—i.e.,
time is ‘frozen’ by the parent node's SP. Node 3 then
handles its internal processing in essentially the same
manner as nodes 1 and 2.

The dotted lines indicate the top-down processes by
which discrete state representations can be extracted or
inferred from the stored Markov chains, and passed down
the network. Top-down processing can be used to support
the recognition of inputs patterns, to make predictions, or
to generate output.

3. MOTIVATIONS BEHIND THE HSMM

Our interest in the HTM as a model for representing mu-
sical knowledge derives from its potential to build spatio-
temporal hierarchies. The current HTM implementation
from Numenta Inc., however, is focused primarily on
visual pattern recognition [4, 5], and is currently incap-
able of learning the sort of high-level temporal structure
found in music. This structure depends not only on the
temporal proximity of input patterns, but also on the spe-
cific sequential order in which those patterns arrive. The
HSMM treats sequential order explicitly, and can thus
build detailed temporal hierarchies.

Another motivation behind the HSMM lies in the fact
that the HTM is strictly an offline learner. For composi-
tional applications, we are interested in a system that can
acquire new knowledge during interaction, and exploit
that knowledge in the compositional process. We have
thus designed the HSMM with four primary functions in
mind:

1) Recognition: The system should have a represent-
ation of the hierarchical structure of the music at
any given time in a performance.

2) Generation: The system should be capable of
generating stylistically integrated musical output.

3) Continuation: If a performance is stopped at a
given point, the system should continue in a styl-
istically appropriate manner.

4) Pattern Completion: Given a degraded, or partial
input representation, the system should provide a
plausible completion of that input (i.e., by adding
a missing note to a chord).

4. MUSIC REPRESENTATION

For the current study, we are working with standard MIDI
files from which note data is extracted and formatted into
three 10-member vectors: one for pitch data, one for
rhythmic data, and one for velocity data. The incoming
music is first pooled into structures similar to Cope’s
“Groups” [1]—vertical ‘slices’ of music containing the
total set of unique pitches at a given moment. A new
Group is created every time the harmonic structure
changes, as shown in Figure 2. The Groups are prepro-
cessed using a simple voice-separation algorithm, which

divides polyphonic material across the 10 available
voices in the vector representation. Group pitches are first
sorted in ascending order, after which the voice separa-
tion routine follows one simple rule: tied (sustained)
notes must not switch voices.

Pitch material is represented using inter-pitch ratio
[16], calculated by converting the MIDI notes to hertz,

and dividing the pitch at time t-1 by the pitch at time t. In
order to avoid misleading values, as a result of calculat-
ing the ratio between a rest (pitch value 0.0) and a pitch,
rests are omitted from the pitch representation, and the
velocity representation is used to indicate when notes are
active or inactive (see Figure 2).

It will be noted that velocity is not given using con-
ventional MIDI values, but is rather used as a flag to in-
dicate the state of a given voice in the Group. Positive
values indicate onsets, negative values indicate sustained
notes, and zeros indicate offsets. We have simplified the
non-zero values to 1 and -1 in order to avoid attributing
too much weight to note velocity in the training and in-
ference process.

The rhythmic values used represent the times at which
each voice undergoes a transition either from one pitch to
another, or from a note-on to a note-off. We use the inter-
event time between such changes, and calculate the ratio
between consecutive inter-event times, for each voice n,
according to the following:

interEventRatiot [n]= interEventTimet−1 [n]
interEventTime t[n]

 (1)

The final representation for the HSMM will thus consist
of one 10-member inter-pitch ratio vector, one 10-mem-
ber inter-event time ratio vector, and one 10-member ve-
locity flag vector.

5. HSMM LEARNING AND INFERENCE

Figure 3 shows a four-level HSMM hierarchy with inputs
for pitch, rhythm, and velocity information, an “associ-
ation” node (L2) for making correlations between the L1
outputs, and two upper-level nodes for learning higher-
ordered temporal structure. The association node at L2
provides the necessary connectivity between pitch,
rhythm, and velocity elements required for the identifica-
tion of musical “motives.” The upper-level nodes at L3
and L4 are used to learn high-order musical structure
from the motives learned at L2.

Figure 2. Music representation for the HSMM.

5.1 Online Learning in the HSMM

Whereas the TP in the HTM builds Markov chains during
its training phase, in the HSMM we focus simply on con-
structing discrete sequences from the series of patterns
input to the node. As in the HTM, the patterns stored in
the SP will be referred to as “coincidences.” The se-
quences stored by the TP will be referred to simply as
“sequences.”

5.1.1 Learning and Inference in the Spatial Pooler

The objective of SP learning is to store unique input pat-
terns as coincidences, while the objective of SP inference
is to classify input patterns according to the stored coin-
cidences. The algorithm used is given in Figure 4. As in
the HTM, when a new input is received the SP checks the
input against all stored coincidences, C. The result is an
SP output vector yt, calculated according to:

y t [i]=e−d p , C [i] 2/ 2

, for i=0 to ∣C∣−1 (2)
where d(p,C[i]) is the Euclidean distance from input p to
coincidence C[i], and σ is a constant of the SP. The con-
stant σ is used to account for noise in the input, and is
useful for handling rhythm vectors, where frequent fluc-
tuations of timing accuracy are expected. The output yt is
a belief distribution over coincidences, in which a higher
value indicates greater similarity between input pattern p
and stored coincidence C[i], and thus greater evidence
that p should be classified as C[i]. If the similarity of p to
all stored coincidences is less than the minumum allowed
similarity, simThreshold, p is added as a new coincidence.

In the event that a new coincidence is added, the al-
gorithm uses the value of maxSimilarity—i.e., the belief
in the coincidence most similar to input p—as the initial
belief value when adding the new coincidence. It then
normalizes yt in order to scale the new belief according to
the belief over all stored coincidences. In order to decide
whether a new coincidence is required at higher levels,
we start by first determining whether the input pattern λ
(see Figure 1) should be stored as a new coincidence.
This is simply a matter of checking the length of the λ
vector at time t against the length at time t-1. If the length
has increased, we know that at least one of the children
has learned a new representation in the current time step,
and that a new coincidence must be added in order to ac-
count for the additional information. For each new coin-
cidence stored by the SP, a histogram called the counts
vector is updated. In the HTM, the update is an integer
incrementation—a count of how many times the coincid-
ence has been seen during training. However, because the

HSMM is an online learner, an integer incrementation is
not appropriate, as it would lead to counts of vanishingly
small proportions being assigned to new coincidences if
the system were left running for long periods of time.
Thus, in the HSMM, the counts vector is updated accord-
ing to the following:

inc=∣C∣× 0.01 (3)

countst [topCoinct]=countst−1 [topCoinct]inc (4)

counts t[i]=counts t[i]
1inc

, for i=0 to ∣counts∣−1 (5)

where C is the number of learned coincidences, inc is the
incrementation value, and topCoinct is the coincidence
that rated as having the maxSimilarity (Figure 4) to the
input. Because counts is regularly normalized, it repres-
ents a time-limited histogram in the HSMM.

SP inference above L1 is calculated as in the HTM, but
we outline it here for the sake of clarity. At higher levels
we want to calculate the probability that the new input λ
should be classified as one of the stored coincidences.
When the node has more than one child, we consider
each child’s contribution to the overall probability separ-
ately:

C=C 1∪...∪C M

=1∪...∪M

y t [i]=∏
j=1

M

max
k

C j [k , i]× j [k] , for i=0 to ∣C∣−1
 (6)

where M is the number of child nodes, C j is the portion
of coincidence vector k attributed1 to child j, and λj is the
portion of λ attributed to child j. Figure 5 shows an ex-
ample calculation for a hypothetical SP with two stored
coincidences.

p The current input pattern

C The table of stored coincidences

maxSimilarity The maximum similarity value found

simThreshold The minimum degree of similarity between
input p and coincidence C[i] required for p
to be classified as C[i]

unmatchedCoinc A count of the number of times input p was
found to be insufficiently similar to all co-
incidences in C

 Set maxSimilarity to 0
 For each stored coincidence C[i] in C
 Calculate yt[i], given input p, according to Equation 2
 If yt[i] > maxSimilarity
 Set maxSimilarity to yt[i]
 If yt[i] < simThreshold
 Increment unmatchedCoinc count

 If unmatchedCoinc count = size of C
 add input p to stored coincidences C
 append maxSimilarity to end of yt vector
 normalize yt vector

 Figure 4. Online SP learning and inference.

1Recall that when the node has more than one child, each
coincidence will be a concatenation of child outputs.

Figure 3. A four-level HSMM hierarchy.

5.1.2 Learning in the Temporal Pooler

The objective of TP learning is to construct sequences
from the series of belief vectors (y) received from the SP.
When a new input to the TP is received, the TP first cal-
culates the winning coincidence of yt:

topCoinc t= argmax
i

 y t [i] (7)

It then determines whether this coincidence has changed
since the previous time step—i.e., whether topCoinct

equals topCoinct-1—and stores the result in a flag called
change.

The next step is to determine whether the transition
from topCoinct-1→ topCoinct exists among the TP’s
stored sequences. To do this, we depart from the HTM
entirely, and use an algorithm we refer to as the Sequen-
cer algorithm. In the Sequencer algorithm, we consider
two aspects of the relationship between topCoinct and a
given stored sequence, Seqn: 1) the position of topCoinct

in Seqn (zero if topCoinct ∉ Seqn), referred to as the “se-
quencer state”, and 2) the cumulative slope formed by the
history of sequencer states for Seqn. Thus, if Seqn is four
coincidences in length, and each successive topCoinct

matches each coincidence in Seqn, then the history of se-
quencer states will be the series: {1, 2, 3, 4}, with each
transition having a slope of 1.0. We use a vector called
seqState to store the sequencer states, and a vector called
seqSlope to store the cumulative slope for each sequence,
formed by the history of sequencer states. The slope is
calculated as follows:

seqSlope t [i]= 1
seqState t[i]−seqState t−1[i]

 (8)

seqSlope t [i]={seqSlope t−1[i]−seqSlope t[i] , i=1.0
seqSlope t−1[i]−∣seqSlopet [i]∣, i≠1.0

 (9)

seqSlope t[i]= 2
1e−seqSlopet [i]

−1 (10)

where seqStatet[i] indicates the position of topCoinct in
sequence i (zero if non-member). The sigmoid scaling
performed in Equation 10 helps to constrain the cumulat-
ive slope values. Figure 6 shows an example of using cu-
mulative sequence slopes to reveal the best sequence.

At levels above L1, we only update the seqSlope vec-
tor when change = 1, in order to help the TP learn at a
time scale appropriate to its level in the hierarchy. A node
parameter, slopeThresh, is used to determine the minim-
um slope required for the TP to pass onto the inference
stage without adding a new sequence or extending an ex-
isting sequence. If the maximum value in seqSlope does
not exceed the value of slopeThresh, then either a new se-
quence is created, or an existing sequence extended.

Generally, we allow only one occurrence of any given
coincidence in a single sequence at all levels above L1,
though any number of sequences may share that coincid-
ence. This is done to avoid building long sequences at the
bottom of the hierarchy, thus dividing the construction of
longer sequences across the different levels. We allow
consecutive repetitions of coincidences at L1, but do not
allow non-consecutive repetitions. This is a musical con-
sideration, given the frequent use of repetitions in music-
al language.

5.1.3 Inference in the Temporal Pooler

The objective of TP inference is to determine the likeli-
hood that topCoinct is a member of a given stored se-
quence. At each time step, the TP uses the counts vector,
from the SP, to update a Conditional Probability Table,
called the weights matrix, which indicates the probability
of a specific coincidence occurring in a given sequence.
The weights matrix is calculated as:

weights [i , j]=counts [j]×I i , j / ∑
i=1

k

counts [k]×I i , j (11)

 I
i , j
={1, C [j] ∈ S [i]

0, C [j] ∉ S [i]

where C[j] is the jth stored coincidence and S[i] is the ith

stored sequence.
The probabilities stored by the weights matrix are used

during TP inference, and also when forming top-down
beliefs in the hierarchy, as introduced in Section 2. It is a
row-normalized matrix where rows represent sequences
and columns represent coincidences. Because the counts
vector maintains its histogram of topCoinct occurrences
over a limited temporal window, the weights matrix in the
HSMM is able to act as a form of short-term memory for
the node.

The output of TP inference is the bottom-up belief
vector z, which indicates the degree of membership of
topCoinct in each of the stored sequences. The argmax of
z thus identifies the sequence most strongly believed to
be active, given topCoinct. To calculate z, we use a vari-
ant of the “sumProp” and “maxProp” algorithms used in
the HTM [6], which we refer to as pMaxProp. The al-
gorithm uses the weights matrix to calculate a belief dis-
tribution over sequences, as follows:

z [i]=max
j=1

i

weights [i , j]× y [j] (12)

An example run of the pMaxProp algorithm is given in
Figure 7, using the coincidences and sequences from Fig-
ure 6. Because the weights matrix in the HSMM is a

 Figure 6. Using seqSlope to find the best sequence.

 Figure 5. SP inference calculations above L1.

short-term memory, and the pMaxProp algorithm is a
“one-shot” inference, with no consideration of the previ-
ous time step, we combine the results of pMaxProp with
the results of the Sequencer algorithm, to yield the final
bottom-up belief vector:

zt [i]=
zt [i] seqSlopet [i]

2
 (13)

5.2 Belief Formation in an HSMM Node

The final belief vector to be calculated, a belief distribu-
tion over coincidences called BelC, represents the combin-
ation of the node's classification of a given input, and its
prediction regarding that input in the current temporal
context. Thus, for every bottom-up input there is a top-
down, feedback response. Bottom-up vector representa-
tions passing between nodes are denoted with λ, while
top-down, feedback representations are denoted with π2.
A schematic of node processing can be seen in Figure 8.
The top-down, feedback calculations used in the HSMM
are the same as those used in the HTM, but we outline
them here for completeness.

The first step in processing the top-down message is to
divide the top-down parent belief π by the node's bottom-
up belief λ (at the top of the hierarchy, the bottom-up be-
lief z is used for the top-down calculations):

' [i]=[i] / [i] (14)
Next, the π’ vector is used to calculate the top-down be-
lief distribution over stored coincidences as:

y [i]=max
Seq

i
∈S
weightsT [i , j]× ' [j]

 for i=0 to ∣C∣−1
 (15)

where weightsT[i,j] is the transposed weights matrix, and
y↓ is the top-down belief over coincidences, and S is the
table of stored sequences. Figure 9 gives an example, as-
suming the coincidences and sequences from Figure 7.

The BelC vector is then calculated as the product of the
top-down (y↓) and bottom-up (y↑) belief distributions over
coincidences:

BelC [i]= y [i]× y [i] (16)

This calculation ensures that the belief of the node is al-
ways based on the available evidence both from above
and below the node’s position in the hierarchy. At all
levels above L1, the top-down output of the node (the
message sent to the children) is calculated using the BelC

vector and the table of stored coincidences C:

[i]=argmax
C [i]∈C

C [i]× BelC [j]

for i=0 to ∣C∣−1
 (17)

2At the node level, the λ and z vectors are equivalent. The
naming is intended to distinguish the between-node pro-
cesses from the within-node processes.

This calculation ensures that each child portion of the
top-down output is proportional to the belief in the node.
In cases where the parent node has two or more children,
the π vector is divided into segments of length equal to
the length of each child’s λ vector (i.e., reversing the con-
catenation of child messages used during bottom-up pro-
cessing). The various stages of top-down processing are
illustrated on the right side of Figure 8.

One extra step, in support of TP inference in the
HSMM, is added that is not present in the HTM. In ac-
cordance with the ideas of the MPF, it seemed intuitively
clear to us that predictions could be used locally in the TP
to support the learning process by disambiguating SP in-
puts whenever possible. With this in mind we added a
calculation to the TP inference algorithm that biases the
SP belief vector, y, according to the state of the change
flag, and the current top-down inference over sequences.
In cases where the sequence inferred by top-down pro-
cessing at time t-1 contains topCoinct-1, and change = 0,
the belief value for topCoinct-1 is strengthened. However,
when change = 1, belief in the next coincidence in the in-
ferred sequence is strengthened. The algorithm is given in
Figure 10. Thus, when the state of the node appears to be
changing, belief is biased slightly toward what is most
likely to occur, whereas when the state appears to be
stable, the most recent belief is assumed to be correct.

6. DISCUSSION AND CONCLUSION

The strength of the HSMM lies in its balancing of hier-
archical interdependence with node-level independence.
Each node learns in the context of the hierarchy as a
whole, but also forms its own representations and beliefs
over a particular level of musical structure. At L1, simple
motivic patterns can be recognized and/or generated, and
at the higher levels, larger musical structures like phrases,
melodies, and sections can also be learned, classified, and

Figure 9. Using the weights matrix to calculate the
top-down belief over coincidences.

 Figure 7. The pMaxProp algorithm calculations.

 Figure 8. HSMM node processing.
.

generated. Further, since nodes above L1 all process in-
formation in an identical manner, and only require a
single child, additional high-level nodes could be added,
enabling the learning of higher levels of formal structure
—songs, movements, compositions. Each node can be
monitored independently, and its state exploited for com-
positional, analytical, or musicological purposes. Com-
position tools could be developed, offering various levels
of interactivity, while maintaining stylistic continuity
with the user's musical language. In the area of classic
Music Information Retrieval, low levels of the HSMM
could be used to identify common motivic gestures
among a given set of works, while higher levels could be
used to recognize the music of individual composers, or
to cluster a number of works by stylistic similarity.

topSeqt-1 The sequence inferred by top-down processing

predCoinc The predicted coincidence

 For each coincidence c in topSeqt-1

 If topSeqt-1[c] equals topCoinct-1

 Set predCoinc to topSeqt-1[c+1]

 If change = 0
 y[topCoinct-1] = y[topCoinct-1] * 1.1
 else if change = 1
 y[predCoinc] = y[predCoinc] * 1.1

 Figure 10. Biasing the predicted coincidence.

The HSMM exploits short-term and long-term
memory structures, and uses an explicit sequencing mod-
el to build its temporal hierarchies, thus giving it the ca-
pacity to learn high-level temporal structure without the
tree-like topologies required by HTM networks.

Tremendous progress has been made in the cognitive
sciences and cognitive modeling, but such work has re-
mained largely unexplored by the computer music com-
munity, which has focused more on pure computer sci-
ence and signal processing. The HSMM offers a first step
toward the development and exploitation of a realistic
cognitive model for the representation of musical know-
ledge, and opens up a myriad of areas for exploration
with regard to the associated cognitive behavior.

7. FUTURE WORK

A working prototype of the HSMM has been implemen-
ted, and initial tests have shown great promise. A future
paper will cover the evaluation in detail, with an emphas-
is on exploiting the strengths offered by the cognitive
model.

We are interested in exploring alternative distance
metrics for the L1 nodes—particularly the pitch and
rhythm nodes, where more musically-grounded metrics
may be effective. We are also interested in exploring dif-
ferent topologies for the hierarchy, in particular, topolo-
gies that isolate individual voices and allow the system to
learn both independent monophonic hierarchies and asso-
ciative polyphonic hierarchies. Along similar lines, we
would like to explore the possibilities offered by state-
based gating of individual nodes in more complex hier-
archies, in order to simulate the cognitive phenomenon of
attention direction.

8. REFERENCES

[1] D. Cope: Computer Models of Musical Creativity. 87-123,
226-242, MIT Press, Cambridge, MA, 2005.

[2] S. Dubnov, G. Assayag, and O. Lartillot: “Using Machine-
Learning Methods for Musical Style Modelling,”
Computer, 36/10, 2003.

[3] D. Eck and J. Schmidhuber: “Learning the Long-Term
Structure of the Blues,” Lecture Notes in Computer
Science, Vol. 2415, Springer, Berlin, 2002.

[4] D. George. “How the Brain Might Work: A Hierarchical
and Temporal Model for Learning and Recognition,” PhD
Thesis, Stanford University, Palo Alto, CA, 2008.

[5] D. George and J. Hawkins: “A Hierarchical Bayesian
Model of Invariant Pattern Recognition in the Visual
Cortex,” Redwood Neuroscience Institute, Menlo Park,
CA, 2004.

[6] J. Hawkins and S. Blakeslee: On Intelligence, Times
Books, New York, NY, 2004.

[7] K. Hirata and T. Aoyagi: “Computational Music
Representation Based on the Generative Theory of Tonal
Music and the Deductive Object-Oriented Database,”
Computer Music Journal, 27/3, 2003.

[8] D. Hörnel and W. Menzel: “Learning Music Structure and
Style with Neural Networks,” Computer Music Journal,
22/4, 1998.

[9] F. Lerdhal and R. Jackendoff: A Generative Theory of
Tonal Music, MIT Press, Cambridge, MA, 1983.

[10] J. Maxwell and A. Eigenfeldt: “The MusicDB: A Music
Database Query System for Recombinance-based
Composition in Max/MSP,” Proceedings of the 2008
International Computer Music Conference, Belfast,
Ireland, 2008.

[11] M.C. Mozer: “Neural Network Music Composition by
Prediction: Exploring the Benefits of Psychoacoustic
Constraints and Multi-scale Processing,” Connection
Science, 6/2-3, 1994.

[12] E. Pollastri and G. Simoncelli: “Classification of Melodies
by Composer with Hidden Markov Models,” Proceedings
of the First International Conference on WEB Delivering
of Music, 2001.

[13] Y. Uwabu, H. Katayose and S. Inokuchi: “A Structural
Analysis Tool for Expressive Performance,” Proceedings
of the International Computer Music Conference, San
Fransisco, 1997.

[14] K. Verburgt, M Dinolfo and M. Fayer: “Extracting Patterns
in Music for Composition via Markov Chains,” Lecture
Notes in Computer Science, Springer, Berlin, 2004

[15] G. Wilder: “Adaptive Melodic Segmentation and Motivic
Identification,” Proceedings of the International Computer
Music Conference, Belfast, Ireland, 2008.

	1. INTRODUCTION
	2. background: the HTM framework
	3. Motivations behind the HSMM
	4. Music representation
	5. HSMM learning and inference
	5.1 Online Learning in the HSMM
	5.1.1 Learning and Inference in the Spatial Pooler
	5.1.2 Learning in the Temporal Pooler
	5.1.3 Inference in the Temporal Pooler

	5.2 Belief Formation in an HSMM Node

	6. Discussion and conclusion
	7. Future work
	8. REFERENCES

