
Multi-Agent Area Coverage Using a Single
Query Roadmap: A Swarm Intelligence

Approach

Ali Nasri Nazif?, Alireza Davoodi, and Philippe Pasquier

Faculty of Communication, Art and Technology
School of Interactive Art and Technology

Metacreation, Agents and Multiagent Systems (MAMAS) Group,
250 - 13450 102nd Avenue, Surrey, BC, Canada, V3T 0A3

{anasri}@aut.ac.ir, {alireza_davoodi,pasquier}@sfu.ca
http://www.siat.sfu.ca

Abstract. This paper proposes a mechanism for visually covering an
area by means of a group of homogeneous reactive agents through a
single-query roadmap called Weighted Multi-Agent RRT, WMA-RRT.
While the agents do not know about the environment, the roadmap is
locally available to them. In accordance with the swarm intelligence prin-
ciples, the agents are simple autonomous entities, capable of interacting
with the environment by obeying some explicit rules and performing the
corresponding actions. The interaction between the agents is carried out
through an indirect communication mechanism and leads to the emer-
gence of complex behaviors such as multi-agent cooperation and coor-
dination, path planning and environment exploration. This mechanism
is reliable in the face of agent failures and can be effectively and eas-
ily employed in cluttered environments containing narrow passages. We
have implemented and evaluated the algorithm in different domains and
the experimental results confirm the performance and robustness of the
system.

Key words: Multi-agent, Single query Roadmap, Environment Cover-
age, Swarm Intelligence, Indirect Communication

1 Introduction

The area coverage problem in robotics deals with the use of one or more robots
to physically sweep [8] or visually sense [5]the free space of an area. The aim of
this research study is to propose a robust mechanism to cope with the problem
of multi-agent visual environment coverage.

To realize this purpose, we apply an emergent coordination approach and
introduce a bio-inspired technique which utilizes a roadmap called WMA-RRT and
employs a group of multiple autonomous agents to cover a given environment.
To this end, agents should be capable of performing in the area and cooperating
with each other to achieve the mutual objective of covering an area.

? The first and second authors have equally contributed in the paper.



2 Ali Nasri Nazif, Alireza Davoodi, Philippe Pasquier

In accordance with the Swarm intelligence principles originally introduced by
Beni and Wang [3], the proposed system is made up of several simple autonomous
agents. These agents locally interact with the environment and pursue their own
goals by following some simple and explicit condition-action rules and performing
the their corresponding actions. In such a scenario, the multi-agent cooperation
is an invaluable by-product of a special communication mechanism. In the other
words, the direct agents’ interaction with the environment leads to the emergence
of indirect communications and consequently teamwork among the agents.

In this research study, we assume that the structure of the environment and
a 2D map of the area are available. Furthermore, the robots are considered to be
point robots for the sake of simplicity, and it does not affect the solution. If the
robots are circular robots of radius r, Minkowski sum of the static obstacles and
the robots are computed and considered instead of the original static obstacles
in the environment[11]. Moreover, the robots are assumed to have 360 degree
field of view and they are able to observe part of the area which is not further
than a pre-defined visibility range.

The approach to the environment coverage problem, presented in this paper,
can be divided into two processes. Firstly, a special roadmap called WMA-RRT
is constructed and embedded in the environment to discretely represent the
free space. Secondly, WMA-RRT is distributed among all the agents. Each agent
independently bears the responsibility of locally traversing its associated part of
the WMA-RRT roadmap.

The agents employ the WMA-RRT both as a roadmap and an information ex-
change channel. This channel is used by the agents to interact with the environ-
ment and indirectly communicate to one another. In the other words, the agents
change the situation of the environment by altering the states of the edges and
nodes of the roadmap while traversing the roadmap tree. Meanwhile, this infor-
mation is used by the agents in order to decide which action to take, where to
go next, how to return to the origin, how to support other working agents and
handle the agents’ failures during the operation. We have implemented our ap-
proach and evaluated it considering some criteria such as the number of robots,
different visibility ranges and maps.

The rest of the paper is organized as follows. First, in Section 2, we review
some preliminary concepts and related works. The WMA-RRT roadmap is intro-
duced in Section 3. The agents architecture is addressed in Section 4 and followed
by the WMA-RRT traversing algorithm in Section 5. Also, the implementation of
the mechanism and experimental results are presented in Section 6. Finally, Sec-
tion 7 concludes with a short summary of the research and introduces some
future works.

2 Preliminaries and Related Works

2.1 Roadmaps

A roadmap is a graph constructed in the environment to capture the connec-
tivity of the free space of the area. Generally, two types of roadmaps have been
introduced by the researchers. The first group of roadmaps requires and utilizes
the exact structure of the environment. Visibility Graphs and Generalized



Multi-Agent Environment Coverage Using a Single Query Roadmap 3

Voronoi Diagram belong to this group. Kai and Wurm [19] introduce an ap-
proach for environment exploration using Voronoi Diagram. They use Voronoi
Diagram to decompose the environment into several regions and assign each of
them to a robot to explore. Also, Jiao and Tang [17] employ a visibility-based
decomposition approach for multi-robot boundary coverage in which the robots
are supposed to collectively observe the boundary of the environment.

On the contrary, there are sampling-based roadmaps which do not need the
explicit geometrical representation of the workspace. Instead, they use some
strategies for generating sample points throughout the free space and connecting
them to build the roadmap. Basically, two types of sampling-based approaches
have been introduced by the researcher: Multiple Query and Single Query. In
multiple-query planners [9], a roadmap is constructed by simultaneously expand-
ing some trees from several randomly distributed starting points and merging
them to prepare the entire roadmap. It is likely that the roadmap is not con-
nected in a cluttered environment. Probabilistic roadmaps, PRM, introduced by
Kavraki is the most popular multiple-query planner.

Single-query planners, on the contrary, have been introduced to construct a
connected tree which spreads over the environment. They use an incremental
approach to build the roadmap by expanding the tree from a random start-
ing point. RPP, Ariadnes Clew, 2Z, EST, Lazy RPM and RRT are single-query
planners. Since the planner introduced in this paper is a variation of Rapidly-
Exploring Random Tree RRT [10], this section briefly explains how RRT algorithm
works.

The roadmap constructed by the RRT planner is a tree which expands through-
out the free space of a given environment. This planner is probabilistically com-
plete meaning that the probability of covering every location of the environment
converges to one, if the algorithm keeps running for a long enough time.

In order to construct RRT roadmap, first a uniform distribution is used to
insert a sample point qinit in the environment. This point is added as a node
to the RRT tree if collision-free. In each iteration another sample point, qrand,
will be placed randomly in the free space and its nearest neighbor node, qnear,
among previously added nodes will be selected for further expansion. A new
node, qnew, is produced as a result of moving qnear by ε, a predefined value
called step size, toward qrand and it will be added to the roadmap if collision-
free. Figure. 1 illustrates a snapshot of the expansion process.

Fig. 1. This figure illustrates how a RRT tree is expanded given the current state of the
tree.



4 Ali Nasri Nazif, Alireza Davoodi, Philippe Pasquier

2.2 Multi-Agent Environment Coverage

The Swarm Intelligence model, SI, relies on emergent coordination and is in-
spired by the collective behaviors observed in a multitude of species which ex-
hibit social life such as ants and honey bees. As an AI technique, SI discusses
the systems consisting of a population of simple agents interacting locally with
one another or the environment [15, 18, 1] and these interactions often lead to
the emergence of complex and global behaviors.

In one of the oldest attempt, Gordon and Wagner [6] employed honeybees’
foraging behavior to coordinate a group of agents with no elaborate language
and advanced communication device. Svennebring and Koenig [16] introduce a
bio-inspired algorithm for covering an environment decomposed to a number of
cells in which the robots use an artificial pheromone to mark the visited cells.
Also Bayazit [2] discusses a multiple query roadmap used as a means of indirect
communication between agents for covering an environment. Another application
of indirect communications between agents is the work of Halasz [7] in which he
deals with the dynamic redistribution of a swarm of robots among multiple sites
to cover the environment.

Moreover, the swarming behavior model observed among birds flocks, fish
schools and sheep herds motivated Reynolds [14] to introduce a bio-inspired
technique to steer a group of rule-based autonomous agents, called Boid birds-
like object. The Boids are endowed by some simple behaviors like seeking, fleeing,
obstacle avoidance, wandering etc. The Boids make use of these actions to nav-
igate the environment and represent more complex actions.

On the contrary, in intentional cooperation approaches, the agents deliber-
ately communicate or negotiate with each other in order to cooperatively achieve
a mutual goal. Zlot [20] addresses a market-based mechanism for environment
exploration in which they use an auction based method to assign exploration tar-
gets between the agents. Furthermore, Choset [4] surveys different approaches
such as approximation, grid-based and decomposition approaches. In one of the
recent attempt Packer [12] applies a computational geometry approach in order
to compute multiple Watchman routes which can cover inside a given polygon.
In this paper, she first solves the art gallery problem and finds a set of guards
which can collectively cover the entire area. Then, the visibility graph of the
obstacles and static guards is constructed and decomposed into several routes.
Finally, each route is allocated to one agent to traverse.

Grid-based approaches are also used in environment coverage. Hazon and
Kaminka [8] propose a grid-based mechanism in which the environment is de-
composed into several same size cells on the basis of the size of the robots.
Considering the initial positions of the robots, they find a spanning tree of the
free cells which can be decomposed to some balanced sub-trees. Finally each
sub-tree is assigned to a robot.

3 Weighted Multi-Agent RRT

WMA-RRT is an extension of the RRT planner and consequently, categorized as
a single-query planner. Moreover, WMA-RRT roadmap is an infrastructure which



Multi-Agent Environment Coverage Using a Single Query Roadmap 5

supports simultaneous movements of many agents throughout the cluttered en-
vironments which contain narrow passages.

Construction of WMA-RRT begins by figuring out the location of the root of
the roadmap which is called Main Root and continues to specify the nodes that
are adjacent to the Main Root and located at the next level of the tree. These
nodes are called Secondary Roots. The WMA-RRT is then constructed by expand-
ing all the edges between the Secondary Root and Main Root in all directions
throughout the free space.

In the construction of WMA-RRT, it is assumed that all the agents in the en-
vironment are situated close to each other and consequently can be surrounded
by a simple polygon. A simple polygon is a polygon whose boundary does not
cross itself. In order to construct this polygon, the convex hull algorithm [13]
is applied to build a polygonal boundary enclosing all the agents. The convex
hull algorithm considers the locations of the agents as points and constructs the
minimal convex hull of the points regardless of the obstacles in the environment.
Then the intersection point of the two longest diameters of the polygon is cal-
culated and considered as the starting point for the construction of the WMA-RRT
and called Main Root of the roadmap. If the intersection point is not collision-
free, the intersection points of other next longest diameters of the polygon are
considered. If the convex hull is a triangle, the intersection point of two longest
edges of the triangle is considered as the Main Root.

In the second step, the goal is calculating and assigning one particular node
of WMA-RRT to each agent. To this end, the algorithm considers all the edges,
which connect the agents initial locations to the Main Root. A set of candidate
nodes is produced as a result of moving out from the Main Root by the value of
ε towards the agents’ locations along the edges. The value of ε is specified by the
user and must be equal or less than the value of the step size as defined in the
previous section. If a candidate node is collision-free, it is called a Secondary
Node and assigned to the corresponding agent whose location point is an end-
point of the edge. If the candidate node is not collision-free, the algorithm finds
the nearest agent which has been assigned a Secondary Node and assign it to the
agent. Figure. 2 illustrates the Main Root and Secondary Roots of a particular
configuration.

From this point on, the algorithm is similar to the RRT planner algorithm
with two differences. The first one is in the number of initial points, qinit. While
RRT there is only one qinit node, which is randomly located in the free space,
the WMA-RRT includes as many qinit nodes as there are Secondary Roots. The
other difference is observed in the initial expansion of the roadmap. In RRT the
roadmap expands through the root of the roadmap, qinit, while in WMA-RRT the
Main Root is exempted from expansion and instead, the Secondary Roots are
considered for expansion. The initial roadmap expands very rapidly throughout
the free space of the environment and yields a tree with one Main Root, which
has as many sub-trees as there are Secondary Roots. Each sub tree is called a
Branch.

The edges’ weight of the roadmap is initialized to 0 so the roadmap is con-
sidered as a weighted tree. During the covering operation, at-least one agent is
assigned to each Branch. The weights of the edges are updated while travers-
ing the roadmap. The agents use WMA-RRT roadmap to move throughout the



6 Ali Nasri Nazif, Alireza Davoodi, Philippe Pasquier

Fig. 2. Illustrates a situation in which eight agents (small white polygons) are available.
The figure on the left represents the polygonal boundary enclosing the agents, the
diameters and the Main Root (the black circle). The figure on the right illustrates the
corresponding Secondary Roots

free space, interact with the environment and indirectly communicate with one
another. In the other words, while traversing the WMA-RRT roadmap, the agents
perceive information available through the roadmap and update their knowledge
about the environment. Further, the agents change the state of the environment
by depositing information into the nodes of the WMA-RRT. There is no informa-
tion available through the edges. Table 1 represents the information that may
be deposited by the agents and available to them in the WMA-RRT roadmap.

information Main
Root

Secondary
Root

Intermediate
Nodes

eo: label of each outgoing edge No Yes Yes

ei: label of the incoming edge No Yes Yes

wo: weight of the incoming edge No Yes Yes

wi: weight of the outgoing edge No Yes Yes

c: shows all the sub-trees of a node have been com-
pletely explored

Yes Yes Yes

lo: label of the outgoing edge which is temporarily
locked and is not accessible

No Yes Yes

co: label of the first edge of a sub-tree which has
been completely explored

No Yes Yes

Table 1. Represents all the information available in the nodes of the WMA-RRT roadmap.

In some situations, it is impossible to have as many branches as there are
agents. This is specially the case when the environment is highly cluttered and
contains many narrow passages since some of the Secondary Roots may not be
collision free and consequently, have to be deleted from the roadmap. In such



Multi-Agent Environment Coverage Using a Single Query Roadmap 7

situations, in order to make use of the maximum capabilities of the available
agents, the algorithm assigns more than one agent to each branch. Figure. 3 rep-
resents an environment and its corresponding WMA-RRT roadmap containing two
branches and there are four agents available in the environment. As illustrated,
the algorithm assigns two agents to each branch.

Fig. 3. A cluttered environment with narrow passages. Two agents have been assigned
to each branch.

Finally, we compare WMA-RRT tree as a single query roadmap with the Prob-
abilistic Road Map, PRM, as a multiple query roadmap. As mentioned above, a
multiple query planner might lead to a disconnected roadmap and consequently,
some parts of the environment are not accessible by any agents. Figure. 4 rep-
resents the results of running PRM and WMA-RRT algorithms on a sample environ-
ment.

Fig. 4. The figures on the left and right represent the results of running PRM and
WMA-RRT algorithms respectively on an environment.



8 Ali Nasri Nazif, Alireza Davoodi, Philippe Pasquier

4 Agent Architecture

As mentioned in previous sections, the agents in our system are simple au-
tonomous individuals capable of following some explicit condition-action rules
and performing the corresponding actions. To this end, our agents are modeled
based on reactive architecture and are implemented in such a way that supports
beliefs, actions and Plans of the agents. Furthermore, they are utility based
entities, which try to maximize their own utilities independently. The utility
function of an agent is defined as the average over the weight of all the edges,
the agent traverses. The utility function of an agent motivates it to select the
edges with minimum weight.

Additionally, the agents perceptions are represented as beliefs in the agents’
belief bases and each agent contains some pre-defined plans stored in its plan li-
brary. Each plan is an instruction which tells the agent what to do in a particular
circumstance. Each agent has a goal and uses a plan to approach the goal. In the
rest of this section, we discuss some basic beliefs, actions and plans used by the
agents during the covering operation. We use Agent Speak, a multi-agent pro-
gramming languages standard syntax and format in order to explain the agents
beliefs, actions and plans. As discussed in previous section, the agents update
their knowledge base about the world when they reach a node and perceive the
information available at that particular node. In the other words, while travers-
ing the WMA-RRT tree, an agent detects the information available in the nodes of
the roadmap and updates its belief base accordingly. The followings are some
beliefs of the agents:

1. subtreeState(e, w): Standing at each node, an agent could detect some
information about all the outgoing and incoming edges, including the edges’
labels ,e, and weights, w.

2. currentEdge(e,w): When an agent decides which outgoing edge to take, it
can remember the edges label and weight until it reaches the endpoints of
the edge and updates the related information about the traversed edge.

3. completed(e): It means that the agent believes the sub-tree of the current
node that starts with edge e, has been completely explored.

4. currentBranch(b): It represents the current branch, b, which is being ex-
plored.

5. agentName(ag): Each agent has a unique name which is stored in the belief
base of the agent.

Furthermore, each agent is capable of performing some basic external and
internal actions to change the state of the environment and its internal state.
The followings are some of the actions:

1. allocateBranch: Standing at a Secondary Root, an agent updates the state
of the current roadmap’s node, by adding information about the label and
weight of the incoming edge to the current node, which is a Secondary Root

2. traverse: An agent can traverse the selected edge by moving from the start
node of the edge and reaching the end point of it.



Multi-Agent Environment Coverage Using a Single Query Roadmap 9

3. departNode: When an agent decides which edge to traverse next, it increases
the weight of the selected edge by one and updates its corresponding informa-
tion, including the label and new weight of the selected edge, in the current
node.

4. reachNode: As an agent reaches a node, it updates the state of the current
node to represent the label and weight of the incoming edge to the current
node.

5. comeback: When an agent is to return one level back to the parent of the
current node, it should set the current node as completed. It means that the
entire sub-tree of the current node has been completely explored. Then, as
soon as the agent arrives in the parent node, it updates the state of the parent
node to indicate that one of its sub trees has been completely explored.

6. lock(Edge): When an agent enters an edge, it locks the edge temporarily to
prevent other agents enter the edge simultaneously. In order to do this, the
agent adds some information in the start node of the edge representing that
the edge with label Edge is locked. Each locked edge, gets unlocked after a
specific period of time automatically. This period of time equals to the twice
the maximum amount of time an agent needs to completely traverse an
edge, plus some amount of time the agent requires to detect the information
available and update its belief base accordingly. This time can be specified
at the beginning of the covering operation. Remember that the maximum
length of each edge of the WMA-RRT equals to the step size, ε,which has been
already defined in WMA-RRT construction algorithm.

7. detect: The agents use their sensors in order to percept all the information
available in the current node. Standing at a node, an agent also can detect
the outgoing edges of the current node.

8. scan: Standing at a node, each agent can access a local roadmap containing
the current node, incoming edge and outgoing edges of the current node.
The agents cannot store these local roadmaps in their limited memories but
an agent can temporarily employ the local roadmap in order to enumerate
the outgoing edges and assign them temporary labels.

9. enumerate: Standing at a node, an agent changes the state of the current
node by updating information relevant to the incoming and outgoing edges
of the current node. To differentiate the outgoing edges, the agents locally
enumerate them and assign each of them a label. To this end, all the agents
assume that, the labels of all the edges going out of the Main Root, are
zero. As mentioned in previous sections, the roadmap is locally available
to the agents so they can detect all the outgoing edges and label them by
enumrating all the outgoing edges in a clock-wise order starting from the
incoming edge and incrementally assigning each of them a label.To this end,
the algorithm assums that the label of all the Secondary Roots are zero.
In other words, suppose that the weight of the incoming edge of the current
node is w and there are two outgoing edges. Then, by doing a clock-wise
search starting from the incoming edge, the label of the first and second
edges are w + 1 and w + 2 respectively. Figure 5, illustrates how the edges
of WMA-RRT are locally enumerated by the agents.



10 Ali Nasri Nazif, Alireza Davoodi, Philippe Pasquier

Fig. 5. This figure represents how the edges of the WMA-RRT are locally enumerated
and labeled by the agents. Here, the biggest black circle is the Main Root and two
second biggest are the Secondary Roots.

Furthermore, each agent maintains a plan library including some built-in
plans. Some of the simplified versions of the plans available in the plan library
of the agents are as followings:

1. findingBranch: Each agent applies this plan to find a branch to explore.
This plan starts by performing the action of scanning around the Main
Root to build a local roadmap. The local roadmap contains the Main Root,
incoming edge and outgoing edges. The incoming edge to the Main Root
is exclusive to each agent since the agent considers the edge it takes to reach
the Main Root from its initial position as mentioned in Section 3. The local
map is then used by the agent to locally enumerate and label the outgoing
edges. Then, the agent traverses the outgoing edges sequentially in order
to find the first outgoing edge with minimum weight. This is done through
detecting the information available in the Secondary Roots.

!+findingBranch : constructed(wma-rrt) <-
scan;
internalAction.enumerate;
internalAction.getTheUnCheckedEdgeInOrder(Edge);
traverse(Edge);
detect;
!allocation(Edge).

!+allocation(Edge) : isMinimum(Edge) <-
!findingBranch.

!+allocation(Edge) : not isMinimum(Edge) <-
allocateBranch(Edge);
!nextDestination(Edge).

2. nextDestination: This plan is used when an agent reaches a node. Each
agent is simply able to temporarily remember the label and weight of the



Multi-Agent Environment Coverage Using a Single Query Roadmap 11

incoming edge to the current node. This plan tells the agent to scan around
the current node, locally enumerate the outgoing edges to assign each of them
a label, detect all the information available in the current node and find the
next best edge to traverse. The best edge is an edge which is not currently
locked and has not been set as completed and also has the minimum weight
among all other outgoing edges of the current node.

+!nextDestination : true <-
scan;
internalAction.enumerate;
detect;
internalAction.findNextEdge(NextEdge);
!traversing(NextEdge).

3. traversing: This plan is invoked when the agent has made a decision on
which outgoing edge to traverse. This plan makes the agent lock the selected
edge, depart from the current node, traverse the edge and reach the other
endpoint of the selected edge.

+!traversing(Edge) : true <-
departNode;
lock(Edge);
traverse(Edge);
reachNode.

4. return: This plan is used when an agent reaches a leaf or blind node, a node
whose sub-trees have been traversed and set as completed, so the agent
cannot move forward and has to return one level back to the parent of the
current node.

+!return(Node) : leaf(Node) | blind(Node) <-
internalAction.nextEdge(Edge);
comeback(Node);
traverse(Edge);
detect.

5 Exploration of WMA-RRT Roadmap

As discussed earlier, the WMT-RRT roadmap, is considered as a set of several
sub-trees called Branch. The ultimate goal of our algorithm is to assign the
branches of the WMA-RRT roadmap to the agents effectively and let the agents
traverse the tree completely. To achieve this objective, each agent is supposed to
independently find a branch and commit itself to traversing it. An agent start
performing the coverage mission as soon as it arrives at the Main Root.

When an agent arrives at the Main Root the only things it can detect are the
edges going out of the Main Root. Using the findingBranch plan the agents find
a branch and commit to traversing it. Since there is no information maintained
in the Main Root, the agents have to check the Secondary Roots to figure out



12 Ali Nasri Nazif, Alireza Davoodi, Philippe Pasquier

which one has not been yet assigned to one agent. Using the same enumera-
tion approach each agent can exclusively enumerate all the outgoing edges from
the Main Root and visit them sequentially. The information available at the
Secondary Roots tells the agent whether the current branch has been already
assigned to any other agent.

Each agent continues to search for a branch to eventually find a branch and
commit to exploring it. The utility function of an agents motivates it to select
unallocated branches. If there is no remaining unallocated branch, they look for
a branch in which the minimum numbers of agents are working. Running the
findingBranch plan directs each agent to reach its corresponding Secondary
Root. The agents then update the state of the environment accordingly by chang-
ing the states of the nodes.

At each node, the agent executes the nextDestination plan to find the next
edge to traverse. Basically, The outgoing edge with minimum weight is selected
for exploration since edges with higher weights have been already visited more so
it is reasonable to select those edges with fewer weights. Then the agent performs
the trversing plan to update the state of the start node of the edge, traverse
the edge and update the state of the end node of the edge. If an agent reaches
a leaf or blind node of the current branch, it applies the return plan in order
to return to the parent node and the leaf or blind node is marked as completed.
An agent sets a node as completed if and only if the node’s entire sub-trees
have been marked as completed. When an agent is going to perfom the return
plan, it should know which edge is the incomming edge. Since the states of the
incoming edge and outgoing edges of the current node are available, the agent
can figure out which edge is the incoming edge since the incoming edge is the
only edge which has not been marked as completed.

Eventually, when an agent returns to its corresponding Secondary Root, it
marks the Secondary Root as completed and returns one level back to the Main
Root to contribute in exploration of other branches if there is any remaining.
As soon as an agent realizes that all the branches have been set as completed,
it marks the Main Root as completed to indicate that the exploration process is
done.

It is very likely that one agent completes the navigation of its corresponding
branch and returns to the origin while some other agents are still working in other
branches. In such situations, an agent manages to maximize its contribution by
helping some other agents in their exploration missions. As an agent returns to
its corresponding Secondary Root and consequently, reaches the Main Root, it
applied its findingBranch plan to find the branch in which the minimum number
of agents are working in and commit to exploring it. Consequently, the agent
could help other agents working in the same branch to finish the exploration
task. When an agent arrives in a node, which has been marked as completed, it
does not go further and therefore, returns to the parent node by executing the
return plan. This process guarantees the exploration of the environment even
in the case of occurring massive failures in the agents. This feature makes our
system reliable and robust.



Multi-Agent Environment Coverage Using a Single Query Roadmap 13

6 Implementation and Experimental Results

6.1 Implementation

Since the agents are modeled according to the BDI architecture, we have ap-
plied the same design pattern used in the Agent-Speak multi-agent program-
ming language to implement the system. According to this pattern, there is an
environment which is shared between all the agents in the environment and is
implemented in the class SharedEnvironment. All the required data structures
including the data structures for WMA-RRT have been defined and implemented
in a class called EnvironmentModel which models the environment.

Each agent is a thread which is started in the SharedEnvironment class
as soon as the offline process of constructing WMA-RRT is completed. Since all
the agents are homogeneous, each agent is implemented as an object of the
Agent class. In this class, variables such as max-speed, max-force, current-active-
branch, current-position, current-velocity and target-position are defined. This
class also includes all the required data structures for representation of beliefs,
belief base, plans library and all necessary methods like deliberation, plan selec-
tion and belief update. Also, the actions of each agent have been implemented
as methods in the Agent class.

Each plan is also implemented as an object of the Plan class. This class
includes some data structures in order to maintain the plans pre-conditions,
event triggers and a list of references to the actions listed in the plans.

6.2 Experimental Results

We have evaluated the mechanism discussed in this paper, in a variety of envi-
ronment in order to capture the effect of the number of sample points, step size
(distance between two adjutant nodes of WMA-RRT) and the sensor range, which
is the visibility range of the agents. All the experiments have been conducted in a
Pentium 4 CPU 3.00GHz with 1.00 GB of RAM machine. Figure ?? represents
a sample environment including three agents initially located near each other
and its corresponding WMA-RRT tree and areas covered by the agents.

Fig. 6. Shows the results of running the WMA-RRT tree and the coverage mechanism in
the presence of three agents.



14 Ali Nasri Nazif, Alireza Davoodi, Philippe Pasquier

Fig. 7. Represents another sample environment and the corresponding WMA-RRT tree in
the presence of three agents.

The Tables 2 and 3 summarize the results of running the proposed area
coverage mechanism in the presence of three agents on two environments rep-
resented in Figure 6 and 7 respictively. According to the results represented in
Tables 2 and 3, it can be concluded that as the number of samples, step size and
sensor range increase, the coverage percentage of the environment improves. As
the results show, in cluttered environments the step-size should be as small as
possible.

7 Future Works and Conclusion

In this paper, we discuss the problem of visual environment coverage by means
of a group of many simple agents. In the proposed mechanism, a special roadmap
called WMA-RRT is constructed in the environment and used by the agents both
as roadmap and a communication channel. We use an emergent coordination
mechanism in which the agents cooperate with each other to achieve a final
goal while pursuing their own individual objectives. The proposed approach is
specially effective in situations in which the exact structure of the environment is
not known and it is possible to use many numbers of simple agents each of which
is only capable of performing some simple actions and there is no communication
and negotiation devises. While the WMA-RRT can be easily used in an environment
with narrow passages but the covering time increases as the number of narrow
passages increases. This is due to the effect of the value of step size in WMA-RRT.
In order to cover the narrow passages of environments, the value of step size
should be small enough to let the WMA-RRT tree expand throughout the narrow
passages. As further works, we are interested to extend our study in order to
apply a group of heterogeneous agents with a different visibility range to cover
the environment. Also, we are interested in finding a more appropriate roadmap
which decreases the total time of the environment coverage in the presence of
many narrow passages.



Multi-Agent Environment Coverage Using a Single Query Roadmap 15

number of nodes step size run/per each group
of agents

visibility
range

coverage percent-
age

400 20 10 r 74
400 20 10 2r 87
400 20 10 4r 90
400 20 10 infinite 99
800 20 10 r 83
800 20 10 2r 88
800 20 10 4r 92
800 20 10 infinite 99
200 40 10 r 88
200 40 10 2r 93
200 40 10 4r 95
200 40 10 infinite 99
400 40 10 r 93
400 40 10 2r 95
400 40 10 4r 97
400 40 10 infinite 99

Table 2. Represents all the information available in the nodes of the WMA-RRT roadmap.

number of nodes step size run/per each group
of agents

visibility
range

coverage percent-
age

150 20 10 r 68
150 20 10 2r 80
150 20 10 4r 88
150 20 10 infinite 97
300 20 10 r 83
300 20 10 2r 92
300 20 10 4r 95
300 20 10 infinite 99
600 40 10 r 93
600 40 10 2r 95
600 40 10 4r 97
600 40 10 infinite 99
150 40 10 r 68
150 40 10 2r 80
150 40 10 4r 88
150 40 10 infinite 97

Table 3. Represents all the information available in the nodes of the WMA-RRT roadmap.



16 Ali Nasri Nazif, Alireza Davoodi, Philippe Pasquier

References

1. A. Abraham, H. Guo, and H. Liu. Swarm intelligence: Foundations, perspectives
and applications. In In: Swarm Intelligent Systems, Studies in Computational
Intelligence, pages 3–25. Springer, 2006.

2. O. B. Bayazit. Roadmap-based flocking for complex environments. In Proc. 10th
Pacific Conference on Computer Graphics and Applications , PG02, pages 104–
113, 2004.

3. G. Beni and J. Wang. Swarm intelligence. Proceedings Seventh Annual Meeting of
the Robotics Society of Japan, Tokyo: RSJ Press, pages 425–428, 1989.

4. H. Choset. Coverage for robotics - a survey of recent results. Ann. Math. Artif.
Intell., 31(1-4):113–126, 2001.

5. A. Davoodi, P. Fazli, P. Pasquier, and A. K. Mackworth. On multi-robot area
coverage. In 7th Japan Conference on Computational Geometry and Graphs, JC-
CGG2009, 2009. To Appear.

6. N. Gordon, I. A. Wagner, and A. M. Bruckstein. Discrete bee dance algorithm
for pattern formation on a grid. In IEEE International Conference on Intelligents
Agents Technologies, Toronto, CA, pages 545–549, 2003.

7. Á. M. Halász, M. A. Hsieh, S. Berman, and V. Kumar. Dynamic redistribution of
a swarm of robots among multiple sites. In International Conference on Intelligent
Robots and Systems, IROS, pages 2320–2325, 2007.

8. N. Hazon and G. Kaminka. On redundancy, efficiency, and robustness in coverage
for multiple robots. Robotics and Autonomous Systems, 2008.

9. L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. volume 12,
pages 566–580, 1996.

10. S. M. Lavalle and J. J. Kuffner. Rapidly-exploring random trees: Progress and
prospects. In 4th Workshop on the Algorithmic Foundations of Robotics, Algorith-
mic and Computational Robotics: New Directions, pages 293–308, 2000.

11. E. Oks and M. Sharir. Minkowski sums of monotone and general simple polygons.
Discrete & Computational Geometry, 35(2):223–240, 2006.

12. E. Packer. Computing multiple watchman routes. In C. C. McGeoch, editor,
Experimental Algorithms, 7th International Workshop, WEA 2008, Provincetown,
MA, USA, May 30-June 1, 2008, Proceedings, volume 5038 of Lecture Notes in
Computer Science, pages 114–128. Springer, 2008.

13. F. P. Preparata and S. J. Hong. Convex hulls of finite sets of poin ts in two and
three dimensions. Commun. ACM, 20(2):87–93, 1977.

14. C. Reynolds. Steering behaviors for autonomous characters. In Game Developers
Conference, 1999.

15. E. Sahin, T. H. Labella, V. Trianni, J. louis Deneubourg, P. Rasse, D. Floreano,
L. Gambardella, F. Mondada, S. Nolfi, and M. Dorigo. Swarm-bot: Pattern for-
mation in a swarm of self-assembling mobile robots. In Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, Hammamet, pages
6–9. IEEE Press, 2002.

16. J. Svennebring and S. Koenig. Trail-laying robots for robust terrain coverage. In
ICRA, pages 75–82, 2003.

17. L. J. Tang. A visibility-based algorithm for multi-robot boundary coverage. Inter-
national Journal of Advanced Robotic Systems, 5:63–68, 2008.

18. P. Tarasewich and P. R. McMullen. Swarm intelligence: power in numbers. Com-
mun. ACM, 45(8):62–67, 2002.

19. K. M. Wurm, C. Stachniss, and W. Burgard. Coordinated multi-robot exploration
using a segmentation of the environment. 2008.

20. R. Zlot, A. Stentz, A. tony Stentz, M. B. Dias, and S. Thayer. Multi-robot explo-
ration controlled by a market economy. pages 3016–3023, 2002.


