
Auton Agent Multi-Agent Syst
DOI 10.1007/s10458-006-0011-1

Conversational semantics sustained by commitments

Roberto A. Flores · Philippe Pasquier ·
Brahim Chaib-draa

Published online: �
Springer Science+Business Media, LLC 2006

Abstract We propose an operational model that combines message meaning and
conversational structure in one comprehensive approach. Our long-term research
goal is to lay down principles uniting message meaning and conversational structure
while providing an operational foundation that could be implemented in open com-
puter systems. In this paper we explore our advances in one aspect of meaning that
in theories of language use is known as “signal meaning”, and propose a layered
model in which the meaning of messages can be defined according to their fitness to
advance the state of joint activities. Messages in our model are defined in terms of
social commitments, which have been shown to entice conversational structure.

Keywords Social commitments · Interaction protocols · Formal specification ·
Multiagent system modeling and design

1. Introduction

Traditional agent communication language approaches define the meaning and
sequencing of messages independently of each other by using mental states and con-
versation protocols, respectively. Although successful for many years in advancing the
state of the art in agent communication, these approaches have failed to support con-
versations in open systems, which mandate that the mental states of agents be verified

R. A. Flores (B)
Department of Physics, Computer Science & Engineering,
Newport News, VA 23606, USA
e-mail: flores@pcs.cnu.edu

P. Pasquier · B. Chaib-draa
Department of Computer Science & Software Engineering,
Sainte-Foy, Quebec, Canada G1K 7P4

P. Pasquier
e-mail: pasquier@damas.ift.ulaval.ca

B. Chaib-draa
e-mail: chaib@damas.ift.ulaval.ca

Auton Agent Multi-Agent Syst

to abide with the messages they utter without assuming their goodwill to do so [18],
and that protocols bear a correlation between the meaning of messages and their use
in conversations [15]. Following these principles would allow both the engineering of
protocols at design time and the analysis of conversations at runtime, thus enabling
interactions between rule-based and protocol-based agents.

Recent research trends propose that the meaning and connectedness of messages
should be defined using social commitments [2, 7, 9, 12]. We follow these trends
and propose a model in which the meaning of messages is expressed according to
their use in conversations advancing the state of commitments and the actions these
commitments entail in the joint activities in which agents participate.

1.1. Research contribution

Coherent interactions have been known to require shared knowledge on the meaning
of messages and their connectedness in conversations [4].

In this paper, we present our initial steps towards merging these two aspects under
the umbrella of a social commitment-based approach. In the past, we have demon-
strated that agreement to advance the state of commitments entails conversational
structure [7]. Here, we argue that messages are meaningful only if they advance the
state of the commitments that exist in their context of utterance. This is the premise of
“signal meaning”: messages are meaningful if they entail effects that are independent
of the intentions behind their utterance.

The present work fits within our long-term goal of supporting agent interactions
in open environments. Achieving this goal requires identifying theoretical principles
that can be used to define a practical framework upon which interactions can be
built. To this end, all notions in our work are formalized using Object-Z [20], which
is an object-oriented extension of the Z formal specification language [5]. The main
advantage of using this language is that it is reasonably straightforward for translat-
ing definitions into object-oriented implementations. A brief overview of Object-Z is
included as an annex to this paper.

In brief, the primary contribution of our research is to advance the state-of-the-art
in agent communication languages by proposing an operational model that combines
message meaning and conversational structure in one comprehensive and implement-
able approach.

1.2. Language use: speaker and signal meaning

Theories of language use [3] define two complementary types of meaning: speaker’s
meaning, which is based on the use of messages for the communication of intent,
and signal meaning, which is based on the use of messages as coordinating devices
advancing the state of activities.

We drew inspiration from this latter type of meaning and conceptualized messages
as coordinating devices advancing conversations that establish social commitments
that bring about actions advancing joint activities. Following this view, we explore
the possibility that the meaning of messages could be based on the context that is
considered at four cumulative layers of abstraction, which are illustrated in Fig. 1:

• Compositional layer, where meaning can be ascribed to messages outside any
conversational context, taking into account only the relationships between the
instances they contain. For example, a message where the prospective speaker is

Auton Agent Multi-Agent Syst

Fig. 1 Message semantics layers

both the actor of an action and the agent responsible for making the action happen
could be interpreted as an offer that, when spoken, would commit the speaker to
this course of action.

• Conversational layer, where meaning is based on the fitness of utterances to
advance conversations. At this point, the utterance of messages should only be
considered meaningful if they fit within the structure of new or ongoing conversa-
tional threads.

• Commitment state layer, where meaning is given to messages according to the state
of the commitments they seek to advance. For example, an utterance attempting to
retract a commitment should only be meaningful if such a commitment is mutually
known by agents and if it is in a state from which it could be retracted.

• Joint activity layer, where meaning is given according to the contribution of mes-
sages to advance joint activities. That is, a meaningful message would be one
that either continues an ongoing activity between agents, or attempts to begin an
activity that is compatible with the roles that agents are portrayed to play in the
system.

1.3. Overview

To support our model and present the rationale behind it, Section 2 briefly describes
social commitments and their life cycle, including the states in which commitments
exist and the transitions that could take them through these states. We empha-
size transitions that are accomplished through the utterance of messages. Section 3
describes the fundamentals of our model, including the notion of agents as hold-
ers of images of other agents, where images store the messages exchanged between
agents and the commitments they establish and discharge. In this context we define
the notions of shared utterances and shared commitments. Section 4 builds upon
these notions and presents the layers where message meaning is incrementally given
according to the context these layers define. After presenting an example illustrat-
ing the applicability of the model to structure conversations (Section 5) and define
message meaning (Section 6), we conclude with a few remarks on related and future
work (Sections 7 and 8).

2. Social commitments

Social commitments [1, 17, 21] have been proposed as a way to raise expectations
about agent performances. Commitments are defined as engagements in which an

Auton Agent Multi-Agent Syst

Fig. 2 Social commitment states and transitions

agent (called the debtor) is responsible relative to another agent (called the creditor)
for satisfying a given condition.

Commitments have a life cycle made of states and transitions. As shown in Fig. 2, a
commitment can be either accepted or rejected according to whether or not agents are
engaged in it. If accepted, a commitment can be active, violated or fulfilled; if rejected,
it can be either inactive or cancelled. Commitments can move between states through
four transition types: adoption, where an inactive commitment becomes accepted;
violation and fulfillment, where an active commitment becomes violated or fulfilled,
respectively; and discharge, where an accepted commitment becomes cancelled. Ini-
tially, all commitments are inactive, but can become accepted upon adoption. Adopted
commitments are classified as active, violated or fulfilled according to the state of
achievement of their conditions of satisfaction (whether these conditions could be
met, cannot be met, or have been met, respectively), and can become cancelled upon
discharge. It is worth noticing that violation and fulfillment depend on the conditions
of satisfaction, and that adoption and discharge are accomplished through (conversa-
tional) agreement. We model only conversational transitions (adoption and discharge)
and assume that transitions based on the conditions of satisfaction (violation and
fulfillment) are carried out automatically.

2.1. Social commitment operations

We define two operations targeted to commitment stores: adding and deleting.1 To
support agent autonomy, each agent is the only one that can directly add and delete
commitments from its commitment store. However, since commitments are multi-
agent constructs, involved agents can follow communicational conventions through
which they seek to concurrently modify their commitment stores. This is a view held
in argumentation [21], where utterances evidence commitments, either explicitly or
implicitly. As described in the following sections, we analyze the case in which com-
mitments are explicitly used in communication.

2.2. Social commitment messages

Messages are modelled as communicative actions in which a speaker sends an
addressee a (non-empty) set of conversational tokens.

Agents can use the following four tokens to seek agreement to concurrently modify
their commitment stores:

1 That an agent adopts a commitment means that the commitment is added to the commitment store
of the agent. Likewise, discharging a commitment indicates that the commitment is deleted from the
agent’s commitment store.

Auton Agent Multi-Agent Syst

• propose, which indicates commitment operations upon which agreement is sought,
and a time interval by which a reply is expected.

• accept and reject, which are replies indicating an acceptance or rejection to apply
proposed operations to agents’ commitment stores.

• counter, which rejects previously proposed commitment operations while simul-
taneously proposing others to be considered instead.

One last token, named inform, is used to communicate data.

2.3. Conversational transitions

We use a simple interaction protocol called protocol for proposals (pfp) [6] as a
vehicle that agents can use to seek explicit agreement to adopt or discharge social
commitments from their commitment stores.

As shown in Fig. 3, the protocol starts with a proposal (i.e., a message with a pro-
pose token in it) from agent a to agent b. This message can be followed (before the
expiration of a reply deadline) by either pattern α or pattern β. Pattern α indicates
that either agent b sends an accepting message to agent a, or that the interaction
continues with pattern β (but with agents a and b’s participatory roles inverted, i.e.,
the agent that in pattern α was agent a will be agent b in pattern β, and likewise
for agent b). Pattern β indicates that agent a sends a rejection or a counterproposal
message to agent b, in which case the interaction follows (before the expiration of a
reply deadline) by either pattern α or pattern β. All replies except a counterproposal
terminate the protocol; and when an acceptance is issued, both a and b apply the
proposed and accepted operations to their commitment stores.

Fig. 3 The protocol for proposals

Auton Agent Multi-Agent Syst

Fig. 4 Class diagram of social commitment states and pfp transitions

3. Fundamentals

3.1. States, transitions and agreement

As explained earlier, we are only concerned with two commitment state transitions:
adopting and discharge, and then only when these transitions are agreed upon con-
ventional communicational events.

In this analysis, we specify utterances as events marking the occurrence of mes-
sages at a certain moment in time, and agreement as a pair of sequential pfp utterances
where the first utterance has a propose token and the second utterance has an accept
token, both with identical commitment operations, and where these utterances were
spoken and heard and then heard and spoken (in that order) by the same two agents.
This agreement is defined as pfp-agreement (not shown).

Figure 4 shows the class hierarchy of commitment states and pfp-based transitions,
where accepted commitments are adopted through agreement, and where cancelled
commitments are first adopted and then discharged (also through agreement) by the
same two agents.

3.2. Images and agents

We conceptualize agents as image holders, and images as agent representations stor-
ing utterances and commitments. To avoid complex constructs (such as agents hold-
ing images that hold images, ad infinitum, of other agents), we limit these definitions
through the following two properties: agents only capture utterances in which they are
either speaker or addressee (thus circumventing intricate ascriptions, such as agents
being thought to have witnessed other agents’ communications); and, communications
are reliable (which means that the issuing of an utterance implies that speaker and
addressee are aware that it happened). These properties help us capture the shared
state of utterances in the same spirit as that of shared-basis common ground [3].

As shown below, images are defined as repositories of utterances and commitments,
where each commitment is associated with a state, and where all stored utterances
and commitments involve the same agent as a speaker or addressee, and as a creditor
or debtor, respectively.

CommitmentState == SocialCommitment × ↓State

Auton Agent Multi-Agent Syst

SocialCommitmentHolder

store : Time → P CommitmentState
holder : ↓Agent

∀ time : Time; sc : SocialCommitment |
sc ∈ dom(store(time))

• holder ∈ {sc.creditor, sc.debtor}

UtteranceHolder

witnessed : P Utterance
holder : ↓Agent

∀ u : witnessed • holder ∈ u.speechact.performers

Image
SocialCommitmentHolder
UtteranceHolder

Agents are specified as self-aware (at least with respect to utterances and commit-
ments) image holders that keep a consistent record of utterances and commitments.
As shown below, this means that every agent keeps an image of itself, and that all
utterances and commitments between an agent and any other agent are recorded in
both the image that the holder keeps of itself and the image it keeps of the other agent.

ImageHolder

awareof : ↓Agent → Image

∀ image : Image; agent : ↓Agent |
image = awareof (agent)

• agent = image.holder

Agent
ImageHolder

∀ image1, image2 : Image; agent2 : ↓Agent |
image1 = awareof (self) ∧
image2 = awareof (agent2)

• (∀ u1 : image1.witnessed; u2 : image2.witnessed |
agent2 ∈ u1.speechact.performers ∧
self ∈ u2.speechact.performers

• u1 ∈ image2.witnessed ∧
u2 ∈ image1.witnessed) ∧

(∀ time : Time
• ∀ sc1 : dom(image1.store(time)); sc2 : dom(image2.store(time)) |

agent2 ∈ {sc1.debtor, sc1.creditor} ∧
self ∈ {sc2.debtor, sc2.creditor}

• sc1 ∈ dom(image2.store(time)) ∧
sc2 ∈ dom(image1.store(time)))

Auton Agent Multi-Agent Syst

Given the principle of reliable communications, it would be possible to infer that
for all utterances, both speaker and addressee will have an image of themselves in
which they share the utterance. Also, that agents follow agreement conventions based
on utterances means that agents should also keep a consistent record of commitments.
The shared state of utterances and social commitments is defined next.

3.3. Sharing utterances and commitments

An utterance is shared between its speaker and addressee if these two agents are
aware that the utterance has been witnessed by both of them—which is a premise that
holds true given the assumption that communications are reliable. Thus, an utterance
is shared if its speaker and addressee hold images in which they have witnessed its
occurrence.

SharedUtterances : ↓Agent × ↓Agent → P Utterance

∀ agent1, agent2 : ↓Agent
• SharedUtterances(agent1, agent2) =

{u : Utterance | (u.speechact.performers = {agent1, agent2}) ∧
(∀ agent : u.speechact.performers
• ∃ speaker, addressee : Image |

speaker = agent.awareof (u.speechact.speaker) ∧
addressee = agent.awareof (u.speechact.addressee)

• u ∈ speaker.witnessed ∧
u ∈ addressee.witnessed)}

Likewise, a commitment is shared between its creditor and debtor if these agents
hold images recording the commitment in the same state. In addition, having a shared
commitment implies that agents also share the utterances that brought the commit-
ment to its shared state.

SharedCommitments : Time × ↓Agent × ↓Agent → P CommitmentState

∀ time : Time; agent1, agent2 : ↓Agent
• SharedCommitments(time, agent1, agent2) =

{sc : CommitmentState |
∀ agent : {agent1, agent2}
• ∃ image1, image2 : Image | image1 = agent.awareof (agent1) ∧

image2 = agent.awareof (agent2)

• sc ∈ image1.store(time) ∧ sc ∈ image2.store(time)}

4. Layers of interpretation

Based on these notions, we define an incremental layered model to ascribe meaning
to messages. Thus far, we identify four layers: the compositional layer, where meaning
is based on relationships between the constituent instances of messages; the conversa-
tional layer, where meaning is based on the occurrence of messages in conversations
seeking agreement to advance the state of commitments; the commitment state layer,
where meaning is based on the current state of targeted commitments; and the joint

Auton Agent Multi-Agent Syst

activity layer, where meaning is based on the use of messages to advance actions in
joint activities.

4.1. The compositional layer

Definitions at this layer support the categorization of messages based on the identity
and relations between their instance components. These definitions are independent
of the occurrence of messages as utterances, and thus allow classifying messages
outside the scope of conversations.

In the context of the pfp, meaning is given to a message based on the type of
conversational tokens, commitment operations and actions it contains, and on the
relationship between the agents involved as speaker and addressee in its utterance, as
creditor and debtor in its commitment, and as actors in its commitment actions.

For example, a message could be labelled as a proposal (as defined by ToPropose
below) if it contains a propose token, and if the speaker and addressee are the creditor
and debtor of the proposed commitment.

ToPropose : ToSpeak → P ↓Propose

∀ s : ToSpeak
• ToPropose(s) =

{p : ↓Propose | (p ∈ s.tokens) ∧
(s.performers = {p.proposing.commitment.creditor,

p.proposing.commitment.debtor})}

Similarly, a message is a reply (as defined by ToReply) if it contains a reply token
(i.e., either an accept, reject or counter token), if the speaker and addressee are the
creditor and debtor of the commitment, and if there is no other reply token in the
message that refers to the replied commitment operation (thus avoiding cases in which
the same message could have several tokens replying to the same pfp conversation).

ToReply : ToSpeak → P ↓Reply

∀ s : ToSpeak
• ToReply(s) =

{r : ↓Reply |
(r ∈ s.tokens) ∧
(s.performers = {r.replying.commitment.creditor,

r.replying.commitment.debtor}) ∧
(�r1 : ↓Reply |

r1 ∈ s.tokens ∧ r1 �= r
• r1.replying = r.replying)}

These definitions can be used for specifying other messages with more refined
meanings. For example, acceptance and rejection could be specified as replies with an
accept and a reject token, respectively; offer and request can be defined as proposals
where the speaker and the addressee (respectively) are the debtor of the commitment.
As shown below, a request is defined as a proposal where the speaker is the creditor
and the addressee is the debtor of the proposed commitment.

Auton Agent Multi-Agent Syst

ToRequest : ToSpeak → P ↓Propose

∀ s : ToSpeak
• ToRequest(s) =

{p : ToPropose(s) |
s.speaker = p.proposing.commitment.creditor ∧
s.addressee = p.proposing.commitment.debtor}

4.2. The conversational layer

This layer builds upon the compositional layer, and indicates the meaning of messages
in the context of ongoing or potential conversations. Definitions take into account the
time when utterances are issued, whether these utterances are shared, and whether
they begin or could fit within one of the already started pfp conversations.

There are certain conditions that utterances should fulfil to be part of pfp con-
versations. While some conditions are trivial (e.g., proposals should indicate a time
frame in which a reply is expected), some others may not (e.g., to answer a proposal,
a reply should succeed the proposal, it should occur within the time frame specified
by the proposal, and no other reply should be deemed to have answered the proposal
already—moreover, if the reply is an acceptance, the speaker and addressee of the
reply should be the addressee and speaker of the proposal).

To support these conditions, we specify shared proposals and shared replies (below)
as proposals and replies (as described in the compositional layer) that are shared (as
indicated in Section 3.3). Using these notions, we defined that a proposal would be
a sound proposal if its utterance is shared between speaker and addressee, and if its
reply time frame falls beyond its time of utterance (which is a pragmatic requirement
to indicate that all proposals could be answered in the future). Likewise, a reply would
be a sound reply if it is shared, and if there is a preceding shared proposal that could
be answered by this reply and has not been answered by any other reply yet.

SharedProposals : Interval × ↓Agent × ↓Agent → P Utterance

∀ interval : Interval; agent1, agent2 : ↓Agent
• SharedProposals(interval, agent1, agent2) =

{u : SharedUtterances(agent1, agent2) |
u.time ∈ interval.timeframe ∧
ToPropose(u.speechact) �= ∅}

SharedReplies : Interval × ↓Agent × ↓Agent → P Utterance

∀ interval : Interval; speaker, addressee : ↓Agent
• SharedReplies(interval, speaker, addressee) =

{u : SharedUtterances(speaker, addressee) |
(u.time ∈ interval.timeframe) ∧
(∃ reply : ToReply(u.speechact)
• reply �∈ Accept ∨

(speaker = u.speechact.addressee ∧ addressee = u.speechact.speaker))}
Therefore, that a propose token occurs between two agents at a given time is a

sound proposal if there is a shared utterance with that token, and if this token has a
reply time frame ending after the utterance.

Auton Agent Multi-Agent Syst

SoundProposals : Time × ↓Agent × ↓Agent → P ↓Propose

∀ time : Time; agent1, agent2 : ↓Agent
• SoundProposals(time, agent1, agent2) =

{propose : ↓Propose |
(time ≤ propose.reply.until) ∧
(∃ u : SharedProposals(at(time), agent1, agent2)

• propose ∈ ToPropose(u.speechact))}

Likewise, that a reply token occurs between two agents at a given time is a sound
reply (not shown) if there is a shared proposal that could be answered by the reply
and has not been answered yet.2

Next, we define that an utterance is proposing (as shown below) if it has propose
tokens that are proposals (as defined in the compositional level) and sound proposals
(as defined above).

Proposing : Utterance → P ↓Propose

∀ u : Utterance
• Proposing(u) =

ToPropose(u.speechact)∩
SoundProposals(u.time, u.speechact.speaker, u.speechact.addressee)

Similarly to the compositional layer, messages in this layer can be refined to create
other message definitions, such as accepting, rejecting, offering, requesting, and so on.
For example, an utterance is requesting (below) if it has tokens that are proposing and
are requests.

Requesting : Utterance → P ↓Propose

∀ u : Utterance • Requesting(u) = Proposing(u) ∩ ToRequest(u.speechact)

4.3. The commitment state layer

The commitment state layer builds upon the compositional and conversational layers,
and identifies messages based on the commitment states they attempt to advance
when uttered. That is, messages are identified given their form but would only be
successful if they fit the state of the commitments currently in place when they are
uttered.

To support message definitions, we identify the commitment states that agents
share at a given time. For example, InactiveCommitments and RejectedCommitments
(below) identify those shared commitments (as defined in Section 3.3) that are inactive
and rejected, respectively.

2 This is specified by proposed, which maps each shared proposal that could be replied at a given
time to the replies that could reply to it; and replied, which maps a subset of the proposals in proposed
with one of its replies, where each reply replies to only one proposal. Thus, a reply is sound if it can
reply to a non-replied proposal.

Auton Agent Multi-Agent Syst

InactiveCommitments : Time × ↓Agent × ↓Agent → P SocialCommitment

∀ time : Time; a1, a2 : ↓Agent
• InactiveCommitments(time, a1, a2) =

{sc : SocialCommitment |
∃ state : SharedCommitments(time, a1, a2) |

first(state) = sc
• last(state) ∈ Inactive}

RejectedCommitments : Time × ↓Agent × ↓Agent → P SocialCommitment

∀ time : Time; a1, a2 : ↓Agent
• RejectedCommitments(time, a1, a2) =

InactiveCommitments(time, a1, a2) ∪ CancelledCommitments(time, a1, a2)

We use these definitions to specify messages such as proposals to adopt new com-
mitments, proposals to discharge accepted commitments, acceptances to adopt com-
mitments, and so on. To illustrate how these messages are defined, we present below
a proposal to adopt a commitment, which is then refined into a request message.

ProposingAdoption : Utterance → P ↓Propose

∀ u : Utterance
• ProposingAdoption(u) =

{p : Proposing(u) |
p.proposing ∈ Add ∧
p.proposing.commitment ∈ InactiveCommitments(u.time,

u.speechact.speaker, u.speechact.addressee)}

RequestingAdoption : Utterance → P ↓Propose

∀ u : Utterance
• RequestingAdoption(u) = ProposingAdoption(u) ∪ Requesting(u)

4.4. The joint activity layer

The joint activity layer builds upon the compositional, conversational and commit-
ment state layers, and identifies messages according to the commitment actions that
commitments advance in joint activities.

We make use of the NetBill protocol [19], which is an eight-step protocol for buy-
ing electronic goods over the Internet, to exemplify an activity with actions, and the
commitment messages bringing about these actions. As shown in Fig. 5, the protocol
starts when a consumer requests a quote for a product. If the quote from the mer-
chant (step 2) is accepted (step 3) then the merchant sends an encrypted version of
the product to the customer (step 4), who sends an electronic payment order (EPO)
to the merchant (step 5). This EPO is forwarded to a NetBill server (step 6), who will
debit the consumer and credit the merchant. If successful, the server sends a receipt
with a decrypting key to the merchant (step 7) for forwarding to the customer (step 8).

The protocol involves three agent roles (a customer, a merchant and a NetBill
server) and several actions, each associated with a particular role (e.g., the customer
creates an EPO, the merchant produces encrypted goods). It is important to recall

Auton Agent Multi-Agent Syst

Fig. 5 The NetBill protocol

that we are not concerned with how these actions are performed but rather with the
commitment messages that each of these roles can utter to bring about these actions.

Once actions, data and agent roles are defined, they are integrated and corre-
lated in joint activities, such as the NetBill activity (below). This activity defines strict
dependencies between data and actions, and also between actions and agent roles.

NetBill
JointActivity

customer : ↓Customer
merchant : ↓Merchant
server : ↓NetBillServer
description : Description
quote : Quote
goods : Goods
epo : EPO
receipt : Receipt
quoting : ToQuote
delivering : ToDeliverGoods
paying : ToIssueEPO
confirming1, confirming2 : ToIssueReceipt

(customer = quoting.receiver = delivering.receiver = paying.sender =
confirming1.receiver) ∧

(merchant = quoting.sender = delivering.sender = paying.receiver =
confirming1.sender = confirming2.receiver) ∧

(server = confirming2.sender)

(description = quoting.description) ∧
(quote = quoting.quote = delivering.quote) ∧
(goods = delivering.goods = paying.goods) ∧
(epo = paying.epo = confirming1.epo = confirming2.epo) ∧
(receipt = confirming1.receipt = confirming2.receipt)

Auton Agent Multi-Agent Syst

For example, the paying action would have goods as its data input, the customer
as the sender, and the merchant as the receiver of an EPO data output. That is, given
the goods delivered (there is a delivery action with the goods as its data output),
the customer will issue an EPO to the merchant. Just as data create dependencies
between actions, roles cluster actions by identifying their performer. For example, the
customer would be the receiver of a quote and the goods, the issuer of an EPO, and
the recipient of a receipt.

5. Sequencing: A netbill interaction

Figure 6 shows the messages exchanged between customers and merchants in NetBill,
and how these messages are modelled in the pfp.3

That the customer has requested a quote (message 1) indicates that agents share
the commitment that the merchant will reply.4 When the merchant presents a quote
(message 2), he is not only accepting to provide a quote (labelled as commitment α)
but he is both proposing to discharge α because he is informing a quote, and also
proposing that the customer buy the goods based on this quote (labelled as commit-
ment β). At this point, agents share commitment α (the merchant sends a quote),
and two commitments in which the customer replies to the discharge of α and the
adoption of β. When accepting the quote (message 3), the customer indicates her
acceptance to discharge α and adopt β, which becomes the only shared commit-
ment. Since β indicates that the merchant should deliver the goods, both agents know
how the interaction should continue. Delivering the goods (message 4) is defined as
a message in which the merchant proposes both to discharge delivering the goods
(commitment β), since he is delivering them, and to adopt that the customer pays
for them by issuing an EPO (commitment γ). This message results in new shared
commitments where the customer replies to the discharge of β and the adoption
of γ . When the customer sends an EPO (message 5), she accepts these operations,
and also proposes to discharge issuing an EPO (commitment γ), given that she is
issuing one, and to adopt that the merchant issues a receipt and a key (commitment
δ). This message results in the shared state of commitment γ , and two commitments
in which the merchant replies to the proposals to discharge γ and adopt δ. When
the merchant sends a receipt and a key (message 8), he accepts to discharge γ and
adopt δ, and proposes to discharge δ (sending a receipt and a key), given that he is
sending these items. Message 9 (which is not mandated by NetBill but is required by
the pfp) indicates the customer’s acceptance to discharge δ. That there are no con-
versational commitments left at this point indicates the end of the interaction. This
example illustrates the logical dependency between messages that result in structured
conversations.

3 Even though the figure shows that the pfp can be used to model the interaction defined in Net-
Bill, the pfp can support many other message sequences that achieve the same outcome specified by
NetBill. Examples of other interactions include merchants sending unrequested quotes (a case not
that different from regular advertisement), or a customer requesting goods without asking first for a
quote (which may happen in cases where price is known or unimportant to the customer). Readers
are refered to [7] for an analysis of the flexibility afforded by the pfp.
4 The policies applied after each pfp message are described in [7].

Auton Agent Multi-Agent Syst

Fig. 6 Interaction between customer and merchant in the NetBill protocol

6. Meaning: form and success

Messages can be meaningful due to its form and success as transition vehicles between
conversational, commitment and activity states. Whereas form depends on the char-
acteristics of messages, success depends on the context in which messages happen.
Even though form and success are not new as measurements of meaning, we explore
whether they could apply to contexts that are solely based on the states created by
the occurrence of commitment messages. In particular, we examine message form and
success across the four layers presented in Section 4.

6.1. Form

We can use the message RequestQuote to exemplify how form is defined throughout
the four layers in the model. This message, which is shown in Figs. 5 and 6 as message
1, can be informally described as a message from a customer to a merchant proposing
to adopt a commitment in which the merchant is responsible for communicating a
quote to the customer based on a description of goods.

Figure 7 shows in detail the compositional form of this message. The compositional
layer describes it as: a proposal (ToPropose), since it seeks to modify the commit-
ment store of agents; an adoption (ToAdopt), since it aims at adding a commitment; a
request (ToRequest), since the speaker and addressee are the creditor and debtor of
the commitment; and a quote (ToQuote), since it indicates an action in which a quote
is communicated. The message ToRequestQuote puts these elements together, and
also indicates that the addressee is the actor of producing and then communicating a
quote to the speaker.

Auton Agent Multi-Agent Syst

Fig. 7 NetBill RequestQuote message meaning lattice

The conversational layer specifies that once uttered, messages should become part
of the shared utterances of agents. In this context, any utterance could be a proposal
(Proposing) if it is a sound proposal (specified in Section 4.2), and could be a request
(Requesting) if it has the properties of proposing and those of a request. Besides being
a shared utterance, the only condition for a proposal to be proposing would be that
its reply time allows room for a future answer.

The commitment state level indicates that an utterance requesting a quote (Re-
questingQuote) is meaningful only if the commitment being referred to is in a rejected
state; that is, if it is not already recorded in the commitment store of agents as an
adopted shared commitment.5

Lastly, the joint activity level indicates that requesting a quote (RequestQuote) is
an utterance that simultaneously requests to uptake a non-adopted commitment to
quote (RequestQuoteToken) and informs the description of the goods to be quoted
(InformDescriptionToken). This message is related to the role of a customer, which
indicates that any agent uttering it should have the profile to uptake this role.6

The Customer agent role, which is partially defined below, shows the definition
of RequestQuote, RequestQuoteToken and InformDescriptionToken, where the two
latter define the characteristics of utterances requesting to adopt a commitment to

5 This includes not only the case in which the commitment is active but also when it is in a fulfilled
or violated state. Being able to automatically retract a fulfilled or violated commitment (rather than
to wait for an explicit discharge) should apply only in special circumstances, e.g., when sanctions and
rewards do not apply [14].
6 Whether an agent could interact with others in a certain role would depend on whether this agent
is able, willing and authorized to do so. An interesting approach to authorizations, roles and commit-
ments is explored in [9].

Auton Agent Multi-Agent Syst

quote, and informing the description of goods, respectively. The function Requesting-
Quote (not shown), which is used in RequestQuoteToken, defines the features that
utterances requesting to adopt a commitment to quote should have.

The aggregated meaning of RequestQuote can be summarized as that of a mes-
sage spoken by a customer in which she informs a description of goods, and requests
that this description be used by the addressee as the basis for informing her of a
quote (that the merchant is the addressee is established in the NetBill joint activity in
Section 4.4).

Customer
�(RequestQuote)
Agent

RequestQuoteToken
quoting? : ToQuote
utterance! : Utterance

utterance!.speechact.speaker = quoting?.receiver = self ∧
utterance!.speechact.addressee = quoting?.sender

∃ propose : RequestingQuote(utterance!, quoting?)

• propose ∈ utterance!.speechact.tokens

InformDescriptionToken
description? : Description
utterance! : Utterance

∃ inform : ToInform(utterance!.speechact)
• description? ∈ inform.informing

RequestQuote =̂ [quoting? : ToQuote; description? : Description] |
quoting?.description = description?] •

RequestQuoteToken ∧ InformDescriptionToken

6.2. Success

Pre-conditions indicate a set of conditions whose fulfillment would make the utterance
of a message succeed.

We identify pre-conditions using the state of the activities, commitments and con-
versations shared by agents. It is advantageous to define pre-conditions this way
because states depend on utterances, which are observable events. Since the state of
activities is advanced by the state of commitments, which is advanced by the state of
conversations, which is advanced by the messages uttered by agents, any pre-condi-
tions defined in those terms could be directly verifiable by any agent that has kept
track of these events. As a result, any agent should be able to assert whether a message
could be uttered or not given its pre-conditions.

In addition, since we rely on the assumption that communications are reliable, and
that agents follow the same agreement and commitment conventions, then agents
should have identical representations of shared states given that they have witnessed
the same utterances. If that was not the case, discrepancies could exist between
what agents believe they should be sharing. Interestingly, if any discrepancies were

Auton Agent Multi-Agent Syst

identified (e.g., an utterance would not succeed given its pre-conditions, commitments
are not fulfilled when expected), agents could resort to additional interactions to clar-
ify these exceptions (future work).

Pre-conditions could or could not be specified for any particular message. For
example, a message requesting a quote (RequestQuote) could be issued at any time as
long as there is a description that could be used as the input for quoting. In contrast,
other messages should only be uttered at certain times based on the current state of
interactions. For example, presenting a quote (PresentQuote), shown in Figs. 5 and 6
as message 2, should only be uttered if a customer has requested a quote, and if the
reply to such proposal could be issued at that time.7

The PresentQuote message in the Merchant role is shown below.

Merchant
�(PresentQuote)
Agent
PresentQuote =̂
[quote? : Quote; quoting? : ToQuote; delivering? : ToDeliverGoods |
(quote? = quoting?.quote = delivering?.quote) ∧
(∃ reply : RepliesToQuoting(now, self , quoting?)

• ∃ speak : ToSpeak | speak = reply.replying.commitment.action
• now ∈ speak.performance.timeframe)]

• RequestQuoteDischargeToken ∧ Off erGoodsToken ∧ InformQuoteToken

This message is composed of the operations RequestQuoteDischargeToken,
OfferGoodsToken and InformQuoteToken (none of which are shown). These mes-
sages define the characteristics of a request to discharge quoting, an offer to adopt
delivering goods, and an inform of a quote, respectively. The remainder of the defi-
nition (shown between square brackets) indicates the pre-conditions of this message.
The parameters in PresentQuote indicate that the quote being informed, the quote in
the quoting action, and the quote upon which the delivery of goods is based, are the
same. Lastly, RepliesToQuoting (not shown) supports identifying whether a commit-
ment to reply to an adoption to quote exists, and whether this reply could be issued
now.

It is worth highlighting that by using public criteria, such as shared utterances and
shared commitments, and common agreement conventions to modify commitment
stores, the form and success of messages can be justified and verified in open sys-
tems. If any discrepancies were identified (e.g., proposing to discharge a non-accepted
commitment, replying to a non-existing proposal), agents could resort to additional
interactions where these exceptions could be clarified. The type and form of these
recovering dialogues is yet to be explored.

7 This view does not preclude that merchants could provide unrequested quotes. Even though the
form of requested and unrequested quote messages may likely be the same, these messages could be
defined in different roles, e.g., a door-by-door salesperson (who issues unrequested quotes) versus
a store salesperson (who issues requested quotes only). That an agent has received an unrequested
quote would signal the role the speaker is portraying (e.g., “overzealous salesman”) or may indicate
discrepancies in shared states (e.g., “I mistook you by the person that requested me a quote.”, “I
forgot I asked you for a quote earlier today.”).

Auton Agent Multi-Agent Syst

7. Related work

Conversations and commitments have been the subject of previous studies. Some have
studied commitments in argumentation [21], where the evolution of conversations is
motivated by the commitments that are implied (and not necessarily made explicit)
in dialogs (e.g., [13, 16]), while others have studied the mechanics of conversations
using commitment-based conventions. We share these views, and aim to identify the
public elements guiding conversations.

Other efforts pursuing this goal include those led by Chaib-draa [2] (who specifies
dialog games to advance commitment states), Colombetti [9] (who specifies message
meaning based on commitment states and operations) and Singh [12] (who specifies
an algebra to reason about commitment protocols). These efforts share many similar-
ities, and their differences have more to do with focus, abstraction and formalization
than with fundamental principles.

In [12], Mallya and Singh present an algebra for reasoning about protocols. Its
strength resides on the simplicity with which complex protocols can be composed and
analyzed, which contrasts with the complexities of defining even the simplest conver-
sations in our model. This is explained by their high and our low level of abstraction.
At the low end, we use action commitments as the strict logical connection between
states and messages, thus indicating why conversations are structured in a certain way.
Once the structure of conversations is understood, we can abstract from details of
agreement conventions and lengthy message definitions, and start thinking in terms
of labeled states and messages, that is, in terms of protocols. It is at this higher level
of abstraction where the use of an algebra becomes an asset.

In [9], Fornara, Vigano and Colombetti present message definitions in the con-
text of an institution, along with the norms and authorized behaviour that agents
in certain institutional roles should follow. This conceptualization is akin to that of
joint activities, although it is enriched with the concept of authorizations and norms.
Interestingly, the conjunction of authorizations and the definition of messages as dec-
larations allows utterances to affect the state of commitments without an explicit
agreement. That is, by accepting to participate in an activity, agents surrender part
of their autonomy and agree that certain messages could immediately affect their
commitment stores (note that whether an acceptance could or could not be redun-
dant in such cases should be based on the aggregated meaning of messages [11]).
Extending our model to account for institutions is part of our future work. One aspect
that is still missing from this approach is how conversations should evolve, that is,
any formal indication of which agent is to utter the next message (which is differ-
ent than indicating the messages that are allowed to be uttered) at each institutional
state.

In [10], Kagal and Finin, propose a framework to support decision making in con-
versations. Their premise is that conversation protocols can be complemented with
conversation policies defined in terms of permissions (authorizations) and obligations
(responsibilities), which would influence the choice of messages uttered at any con-
versational state. In addition, the framework makes provision for meta-policies, that
is, policies that would resolve conflicts among contradicting policies. To some extent,
this approach shares the same view of authorizations and responsibilities as presented
by Fornara et al. [9], but without the benefit of institutions and roles as their context
of application. Nevertheless, Kagal and Finin explore meta-policies, which is a notion
still to be included into Fornara, et al.’s work.

Auton Agent Multi-Agent Syst

8. Conclusions & future work

In his influential study of language use [3], Clark identifies utterances as signals with
two complementary types of meaning: speaker’s meaning, which is defined in terms of
their use to communicate intent, and signal meaning, which is defined in terms of their
use as coordinating devices advancing joint activities. Although subtle, their differ-
ence is striking: whereas speaker’s meaning appeals to the reasons behind advancing
an activity, signal meaning puts forth a public token advancing it.

Traditionally, the semantics of agent communication languages have emphasized
speaker’s meaning, as reflected by the use of speech acts and mental states in common-
place message definitions. This approach is unrivaled for communicating intent, since
agents can readily know the intention of messages by just observing their definitions
rather than by inferring it from the context of interaction. Yet, definitions are given
independently of any conversational context, and their use in open systems mandates
the sincerity of agents. Signal meaning, on the other hand, has been kept as a low
profile component of meaning and is not addressed by any standardizing effort.

In this paper, we present our initial efforts towards merging signal meaning and
conversational structure using a social commitment-based approach. We argue that
messages can be meaningful independently of the intentions behind their utterance
if they advance the state of the commitments that exist in the context in which they
happen. This work fits within our long-term goal of supporting agent interactions in
open environments. This goal requires identifying theoretical principles that can be
used to define a practical framework upon which interactions can be built. As a result,
the primary contribution of our research is to advance the state-of-the-art in agent
communication languages by proposing an operational model that combines message
meaning and conversational structure in one comprehensive approach.

Future work includes exploring more elaborated commitment state transitions,
which is an effort already underway within the context of sanctions [14], and expand-
ing the model to cover speaker meaning [8] and electronic institutions. On the practical
side, we are planning to implement the model in a computer system, which is a step
that would allow us to validate and refine it against a larger number of examples.

Acknowledgements We are grateful for the support received from the National Science and Engi-
neering Research Council (NSERC) of Canada. We extend our gratitude to the anonymous reviewers,
who provided invaluable suggestions to improve our work.

Appendix

Object-Z overview

Object-Z [20] is an object-oriented extension of Z [5], which is a formal specification
language based on first-order logic and set theory. Object-Z extends Z by support-
ing classes, inheritance and polymorphism. In brief, definitions in Z are organized
around functions and schemas. Schemas are extended in Object-Z to specify classes
and methods.

A function is exemplified below. This function, named multiply, indicates that for
any pair of real numbers given as arguments, the function results in a real number
equal to the multiplication of the arguments.

Auton Agent Multi-Agent Syst

multiply : R × R → R

∀ number1, number2 : R • multiply(number1, number2) = number1 ∗ number2

Schemas support the specification of states and transitions, which are essential to
define classes and methods. The class CounterClass is shown below as an example.
This class defines two methods, one with no name, and the other one named increment.
The method without a name defines the class’ fields (in this case, a natural number
named counter). The increment method specifies that the value of the field counter
is incremented by one each time that this method is invoked (counter’ indicates the
state of counter after the execution of the method).

CounterClass

counter : N

increment
�(counter)

counter′ = counter + 1

The class MultiplyClass (shown below) subclasses CounterClass and defines the
methods multiply and multiplication (where only the latter is defined as public, as
indicated immediately below the class name). The method multiply takes the real
numbers number1? and number2? as arguments and returns a real number result!
(where ? and ! indicate input and output variables, respectively). This method speci-
fies that the value of result! is equal to the multiplication of number1? and number2?
Lastly, the method multiplication is defined as the concurrent invocation of multiply
and increment (inherited from CounterClass) thus counting the number of times that
multiplications are performed.

MultiplyClass
�(multiplication)

CounterClass

multiply
number1?, number2?, result! : R

result! = number1? ∗ number2?

multiplication =̂ multiply ∧ increment

References

1. Castelfranchi, C. (1995). Commitments: From individual intentions to groups and organizations.
In Proceedings of the first international conference on multi-agent Systems, June 1995, (pp. 41–48),
San Francisco, CA.

2. Chaib-draa, B., Labrie, M-A., Bergeron, M., & Pasquier, P. (2006) DIAGAL: An agent commu-
nication language based on dialogue games and sustained by social commitments. Autonomous
Agents and Multi-Agent Systems, 13(1), 61–95.

3. Clark, H. H. (1996). Using language. Cambridge University Press.

Auton Agent Multi-Agent Syst

4. Craig, R. T., & Tracy, K. (1983). Conversational coherence: Form, structure, and strategy. Sage
Publications.

5. Diller, A. (1990). Z: An introduction to formal methods. Sussex, England: John Wiley & Sons, Inc.
6. Flores, R. A., & Kremer, R. C. (2003). To commit or not to commit: Modelling agent conversations

for action. Computational Intelligence, 18(2), 120–173.
7. Flores, R. A., & Kremer, R. C. (2004). A principled modular approach to construct flexible con-

versation protocols. In A. Y. Tawfik, & S. D. Goodwin (Eds.), Advances in Artificial Intelligence:
Canadian AI 2004, Lecture Notes in Computer Science (Vol. 3060, pp. 1–15). May 2004. Springer
Verlag.

8. Flores, R. A., Pasquier, P., & Chaib-draa, B. (2006). What do agents commit to do when they
commit to something? Work in progress.

9. Fornara, N., Vigano, F., & Colombetti, M. Agent communication and institutional reality.
Autonomous Agents and Multi-Agent Systems, forthcoming.

10. Kagal, L., & Finin, T. Modeling communicative behavior using permissions and obligations.
Autonomous Agents and Multi-Agent Systems, forthcoming.

11. Kremer, R. C., & Flores, R. A. (2005). Using a performative subsumption lattice to support
commitment-based conversations. In Proceedings of the fourth international joint conference on
autonomous agents and multiagent systems, July 2005, Utrecht, The Netherlands.

12. Mallya, A. U., & Singh, M. P. A semantic approach for designing commitment protocols. Auton-
omous Agents and Multi-Agent Systems, forthcoming.

13. Parsons, S., McBurney, P., & Wooldridge, M. J. (2004). The mechanics of some formal inter-agent
dialogues. In F. Dignum (Ed.), Advances in agent communication, Lecture Notes in Artificial
Intelligence (Vol. 2922, pp. 329–348). Springer Verlag.

14. Pasquier, P., Flores, R. A., & Chaib-draa, B. (2004). Modelling flexible social commitments and
their enforcement. In M. P. Gleizes, A. Omicini, & F. Zambonelli (Eds.), Fifth international work-
shop on engineering societies in the agents world, Lecture Notes in Artificial Intelligence (Vol. 3451,
pp. 153–165) Tolouse, France, October 2004. Springer Verlag.

15. Pitt, J., & Mamdani, A. (1999). Some remarks on the semantics of FIPAs agent communication
language. Autonomous Agents and Multi-Agent Systems, 2(4), 333–356.

16. Reed, C. A. (1998). Dialogue frames in agent communication. In Proceedings of the third interna-
tional conference on multiagent systems (ICMAS 98) (pp. 246–253). Paris, France: IEEE Press.

17. Singh, M. P. (1991). Social and psychological commitments in multiagent systems. In AAAI fall
symposium on knowledge and action at social and organizational levels, November 1991, Monterey,
California.

18. Singh, M. P. (1998). Agent communicational languages: Rethinking the principles. IEEE
Computer, 31(12), 40–47.

19. Sirbu, M. (1997). Credits and debits on the Internet. IEEE Spectrum, 34(2), 23–29.
20. Smith, G. (2000). The object-Z specification language. Kluwer Publishers.
21. Walton, D. N., & Krabbe, E. C. W. (1995). Commitment in dialogue: Basic concepts of interpersonal

reasoning. State University of New York Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

